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a b s t r a c t

In the present paper we review recent advances in the theory of Dixmier traces and aspects
of their application to noncommutative analysis and geometry. We describe J. Dixmier’s
original construction of singular traces together with recent revisions of his ideas. We pay
particular attention to subclasses of Dixmier traces related to exponentiation invariant ex-
tended limits and notions of measurability due to A. Connes.We discuss in detail the appli-
cations ofDixmier traces to the study of spectral properties of pseudo-differential operators
and a very recent application of Dixmier traces in the study the Fréchet differentiability of
Haagerup’s Lp norm.

© 2016 Elsevier B.V. All rights reserved.

1. An introduction to singular traces

Let B(H) be the algebra of all bounded linear operators on a separable Hilbert space H . By {λ(k, A)}∞k=0 we denote an
eigenvalue sequence of a compact operator A ∈ B(H) counted with multiplicities and arranged in a non-increasing order.
Consider the trace-class ideal L1 in B(H) consisting of all compact operators A ∈ B(H) such that

∞
k=0

|λ(k, A)| < ∞.

The canonical trace on L1 can be defined by the following formula:

Tr(A) =

∞
k=0

λ(k, A), A ∈ L1.

This trace is normal in the sense that Tr(supα Aα) = supα Tr(Aα) holds for every bounded increasing directed family of
positive operators {Aα}α ∈ B(H). It is well-known that the normal trace is essentially unique, that is, every normal trace is
proportional to the canonical trace. Therefore the following question arises naturally. Are there any other traces besides the
canonical trace? Do non-normal traces exist?
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This question was first stated and resolved in the affirmative by J. Dixmier [1]. For positive compact operators A ∈ B(H)
satisfying the following condition:

sup
n≥1

1
log(1 + n)

n−1
k=0

λ(k, A) < ∞ (1)

he defined a weight1

t(A) := lim
1

log(1 + n)

n−1
k=0

λ(k, A), A ≥ 0. (2)

There are two issues with the definition of the weight t in (2). First of all, the condition (1) does not guarantee
the convergence of the sequence


1

log(1+n)

n−1
k=0 λ(k, A)


n≥1

. So, instead of the ordinary limit, a ‘‘generalised’’ limiting

procedure should be considered. Secondly, to extend this weight by linearity to a trace one needs to prove that it is positive
homogeneous, which is straightforward, and additive, which is difficult, on the positive cone.

It turned out that both of these issues can be resolved by a suitable choice of the linear form lim. J. Dixmier chose lim to
be a restriction to sequences of a linear form invariant under the group of affine transformations t → at + b on R, that is, a
functional on R invariant under dilations and translations.

We formulate Dixmier’s result in a simpler form due to A. Connes [2]:

Theorem 1.1. If ω is a state on the space l∞ of bounded sequences, such that
(i) ω vanishes on finitely supported sequences,
(ii) ω(x0, x1, . . .) = ω(x0, x0, x1, x1, . . .) for every x ∈ l∞, then the weight

Trω(A) := ω


1

log(1 + n)

n−1
k=0

λ(k, A)


(3)

is positive homogeneous and additive on the cone of all positive compact operators A ∈ B(H) satisfying (1).

Let Trω also denote the extension by linearity of the weight defined by (3) to the whole space of operators satisfying (1).
We list the properties of this functional:

1. Since eigenvalues of a compact operator are a unitary invariant, it follows that the functional Trω is unitary invariant,
that is, Trω is a trace on B(H);

2. The trace Trω is non-trivial since Trω(diag
 1
n+1

∞

n=1
) = 1;

3. If A is a finite rank operator then Trω(A) = 0 due to the properties of the state ω. Moreover, Trω(A) = 0 for every
A ∈ L1.

Theorem 1.1 provides an example of a non-trivial and non-normal trace Trω . Such traces are termed Dixmier traces in
acknowledgement of J. Dixmier’s contribution.

2. Dixmier traces and measurability

In his construction J. Dixmier first fixed a state on the space of bounded functions and then employed the restriction of
this state to the space of bounded sequences. It turned out to be convenient to do the opposite; to embed the space l∞ of all
bounded sequences into the Lebesgue space L∞(0,∞) and then work with a state on the space of all essentially bounded
functions (see e.g. [3–5]).

In the present section we outline the latter approach to Dixmier traces and show that it is equivalent to the original
construction of J. Dixmier [1]. Our exposition complements that of [6,7].

2.1. Extended limits

We will denote by L∞(0,∞) and by L∞(R) the spaces of all (classes of) real-valued essentially bounded Lebesgue
measurable functions on (0,∞) and R, respectively, equipped with the norm

∥x∥L∞ := esssup|x(t)|,

where essential supremum is taken over all t > 0 and t ∈ R, respectively.

1 In fact, Dixmier worked in the more general setting of the Lorentz ideal Mψ of compact operators with partial sums of eigenvalues that diverge as a
given concave function ψ : (0,∞) → (0,∞) (see Section 2.2 for definitions).
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