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• General theory for the stability of standing waves of second-order in time PDEs.
• Obtains results on special solutions of the Klein–Gordon equation, the KGZ-system, etc.
• Results are applicable to multi-dimensional traveling waves and standing–traveling waves.
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a b s t r a c t

We develop a general theory to treat the linear stability of certain special solutions of second order
in time evolutionary PDE. We apply these results to standing waves of the following problems: the
Klein–Gordon equation, for which we consider both ground states and certain excited states, the
Klein–Gordon–Zakharov system and the beam equation. We also discuss applications to excited states
for the Klein–Gordon model as well as multidimensional traveling waves (not necessarily homoclinic to
zero) for general second order equations of this type. In all cases, our abstract results provide a complete
characterization of the linear stability of such solutions.
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1. Introduction

In this article, we consider second order in time evolutionary
equations/systems in the form

utt + Lu − f (|u|2)u = 0

(t, x) ∈ R1
+

× Rd or (t, x) ∈ R1
+

× [−L, L]d, (1)

where the nonlinearity f : R1
→ R1 and the (unbounded) self-

adjoint linear differential operatorL are to bemade precise in each
concrete example.

We will be interested in the linear stability of various special
solutions of nonlinear PDEs. In order to focus the discussion, we
start with the most natural example, which fits our framework —
the standingwave solutions of (1). These objects have been studied
extensively in the last thirty years and many methods have been
developed to study their stability properties. We would like to use
them as a starting example, in order to motivate our approach and
the abstract results that will address these issues.
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Going back to the standing wave solutions, these are solutions
in the form u(t, x) = eiωtϕω(x), where ω ∈ R1 and ϕω is real-
valued. Such solutions satisfy the stationary equation

Lϕ − ω2ϕ − f (ϕ2)ϕ = 0. (2)
In order to ease into the notion of linear stability, which will be
the main focus, let us consider the linearization of Eq. (1). To that
end, let u = eiωt(ϕω(x) + v(t, x)) and plug it into (1). This is of
course still a nonlinear equation for v. Assuming that v is small, it
is reasonable to ignore all the terms in the form O(v2). We arrive
at the following linear equation for v:

vtt + 2iωvt − ω2v + Lv − f (ϕ2)v − 2ϕ2f ′(ϕ2)ℜv = 0. (3)
Separating the real and imaginary parts, with the assignment v =

(ℜv,ℑv), yields the following system for v:
vtt + 2ωJvt + Hv = 0, (4)
where

J =


0 −1
1 0


, H =


L+ 0
0 L−


,

L+ = L − ω2
− f (ϕ2)− 2ϕ2f ′(ϕ2)

L− = L − ω2
− f (ϕ2).

Note that if the function f is increasing, the self-adjoint operators
satisfy L− ≥ L+.
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Wewould like to point out that the standingwave solutions are
by no means the only example that fits our theory. As we shall see
below, our results are applicable to multi-dimensional traveling
waves aswell as standing–travelingwaves. Additional applications
include the recent work by Stanislavova [1] where the stability of
subsonic travelingwaves for the Benney–Lukemodel is completely
characterized.

In order to give a definition of linear stability, we assume that
the linear system (4) has global solutions for all sufficiently smooth
and decaying data. This is of course equivalent to saying that the
operator

H̃ =


0 1

−H −2ωJ


generates a C0 semi-group on appropriate spaces, but this is some-
times hard to verify in concrete examples. In any case, under
this assumption, we say that the standing wave eiωtϕω is linearly
stable, if the solution to the linear system (4) satisfies limt→∞

e−δt
∥v(t)∥ = 0 for any δ > 0 and for a dense set of appropriate

initial data.
Similarly, we say that the system is spectrally stable, if the spec-

trum of H̃ lies in the closed left half-space. That is σ(H̃) ⊆ {z :

ℜz ≤ 0}. Note that under the standard assumption that H̃ gen-
erates a C0 semi-group, linear stability implies spectral stability,
but not vice versa. Under some natural extra assumptions how-
ever (which guarantee the validity of the so-called spectral map-
ping theorem), the spectral stability is indeed equivalent to linear
stability. We will not explore this connection any further, but the
interested reader can consult the book [2], the excellent survey pa-
per [3] as well as [4,5].

One also has the related notion of nonlinear (orbital) stability.
Basically, this means that if one starts close to the standing wave,
then the solutionwill stay close to thewave,modulo the invariance
of the system under consideration. The notion of asymptotic
stability is the strongest of all and it requires the difference
between the two close solutions (modulo the invariance) to go
to zero as time goes to infinity. We will not pursue these issues
here, except to mention that establishing linearized stability is a
prerequisite for asymptotic stability results, and thus, the results
in this paper should be viewed as an important step toward
accomplishing such a goal. For examples of asymptotic and orbital
stability results see [6–8].

1.1. Examples

We consider the following models — the Klein–Gordon equa-
tion, the Klein–Gordon–Zakharov systemand the beamequation in
the whole space contexts, although the methods developed herein
will be certainly useful for other examples and/or periodic do-
mains. Also, wemainly consider standingwave solutions, although
toward the end of the discussion, we offer some ideas on how to
obtain stability/instability results for multidimensional traveling
waves as well; see Section 2.5.

All of these models have been the subject of an intensive in-
vestigation in the last thirty years, with the majority of the re-
sults concerning orbital stability/instability. This was partly due
to the versatility of the general theory, developed by Grillakis–
Shatah–Strauss for such equations/systems.We providemore spe-
cific references to these studies after our theorems, which once
again concern the linear stability of their special solutions.

We begin with some basic setup, which has dual purpose: on
the one hand, it will motivate our approach to the problem at hand,
and on the other, it will set the stage for the proofs in the subse-
quent sections. We start with the Klein–Gordon model.

1.1.1. Klein–Gordon equation: ground states
Consider

utt −∆u + u − |u|p−1u = 0. (5)

This clearly fits the profile (1), where the operator L := −∆+1. It
is well-known that in this case, the corresponding operator H̃ gen-
erates a C0 semigroup; see [9]. Let us consider some general prop-
erties of the operators H, L±, depending on the type of solutions
ϕω that one encounters. Observe that, if we consider only decay-
ing solutions of (2), we can conclude that σa.c.(L±) ⊂ [1 − ω2,∞)
by Weyl’s theorem. Note that by (2), L−[ϕ] = 0. Moreover, if ϕ
does not change sign (say, we take it to be positive), it follows by
Sturm–Liouville’s theory that L− ≥ 0 and 0 is a simple eigenvalue.
That is σ(L−) ⊂ [0,∞) and L−|{ϕ}⊥ ≥ κ2 > 0.

In addition, differentiating (2) with respect to the spatial vari-
ables produces the identity L+[∇xϕ] = 0, whence Ker[L+] is at
least d dimensional, with eigenfunctions ∂ϕ

∂xj
: j = 1, . . . , d. Usu-

ally, Ker[L+] = span[ ∂ϕ
∂xj

: j = 1, . . . , d], but this is by no means

automatic. Note also that

⟨L+[ϕ], ϕ⟩ = −(p − 1)

ϕp+1(x)dx < 0,

thus guaranteeing the presence of a negative point spectrum for L+.
In the seminal papers by Shatah, [10] and Weinstein, [11], most of
the spectral properties for the operators L± were established. The
full and complete analysis of the spectral properties of L± was sub-
sequently given by Kwong in [12]. We also recommend the excel-
lent paper [13] for a more contemporary approach to these facts.

To summarize the known results in the case of power nonlin-
earities, for p ∈ (1, pmax),

pmax =


1 +

4
d − 2

d ≥ 3

∞ d = 1, 2

we have L− ≥ 0, L−[ϕ] = 0, L−|{ϕ}⊥ ≥ κ2 > 0, while L+ : Ker[L+]

= span[ ∂ϕ
∂xj

: j = 1, . . . , d], with single simple negative eigenvalue,

L+[φ] = −σ 2
0 φ and L+|{φ,∇ϕ}⊥ ≥ κ2 > 0.

We now turn our attention to the problem for excited states of
the Klein–Gordon model.

1.1.2. Klein–Gordon: excited states (vortices) in two dimensions
Besides the ground states solutions, whose properties were de-

scribed in Section 1.1.1 above, there are numerous other ‘‘excited’’
solutions of (5). For example, P.L. Lions, [14] has constructed sta-
tionary solutions in even dimensions2 d = 2k in the form
φ(r1, . . . , rk)ei(m1θ1+···mkθk), m ∈ Zk

where (rj, θj), j = 1, . . . , k are the polar variables corresponding
to (x2j−1, x2j). In the case of two spatial dimensions, this work has
been extended by Iaia and Warchal, [15], who have shown that
there are infinitely many solutions in the form φm,k,p(r)eimθ . More
precisely, these satisfy

− φ′′(r)−
1
r
φ′(r)+

m2

r2
φ(r)+ φ(r)− |φ(r)|p−1φ = 0 (6)

where Eq. (6) is supplied by the natural boundary conditions
limr→0+ r−mφ(r) = 0, limr→0+ r−m+1φ′(r) = mα for some α ≥ 0
and k stands for the number of zeros of φm,k,p(r). In a subsequent
work, Mizumachi, [16] has shown the uniqueness of the positive
solutions of (6) (i.e. for k = 0) and in addition, he has shown the
orbital stability for 1 < p < 3 (and instability for p > 3) of the
standing waves ei(ωt+mθ)φm,0,p(r), where these are understood as
time periodic solutions to the Schrödinger equation and the per-
turbations are taken to be in the form ei(ωt+mθ)z(r). We encour-
age the reader to consult the excellent paper, [13], where these
and other results are reviewed in full detail, including a number
of high-precision numerical verifications thereof.

2 And similarly in odd dimensions, which we do not consider herein.
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