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a b s t r a c t

Aconformal structure on amanifoldMn induces natural secondorder conformally invariant
operators, called Möbius and Laplace structures, acting on specific weight bundles of M ,
provided that n ≥ 3. By extending the notions of Möbius and Laplace structures to the case
of surfaces and curves, we develop here the theory of extrinsic conformal geometry for
submanifolds, find tensorial invariants of a conformal embedding, and use these invariants
to characterize various notions of geodesic submanifolds.
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1. Introduction

The existence of a unique covariant derivative makes differential calculus, including the concept of totally geodesic sub-
manifolds (or, more generally, the tensorial invariants of a Riemannian embedding) in a Riemannian manifold straightfor-
ward.

On a conformalmanifold, where there is no such canonical covariant derivative (there is, however, a Cartan connection on
an enlarged bundle, for dimension at least 3, [1]), a concept of conformal geodesics is also given [2,3] starting from dimension
3 onwards.

These conformal geodesics are curves that are solutions of a 3rd order ODE that depends on the conformal structure alone.
In this paper, we intend to characterize higher-dimensional submanifolds that fulfill some geodesic properties in the

conformal setting and describe the geometric properties and invariants of a conformal embedding.
To make the theory fully general, a first inconsistency of conformal geometry has to be overcome: indeed, while in di-

mensions larger than 3 a conformal manifold admits an associated Cartan connection and is, therefore, rigid, on curves, a
conformal structure means just a differential structure, and on surfaces, a conformal structure and an orientation are equiv-
alent to a complex structure—both are examples of flexible structures.

Here, we call a geometric structure on M rigid if on every open set, the dimension of the space of infinitesimal trans-
formations (vector fields) preserving the given structure is bounded by a number that depends only on dimM and the cor-
responding structure. Otherwise it is flexible. Examples of rigid structures are Riemannian metrics, conformal structures if
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dimM ≥ 3, CR structures and, more generally, all structures that admit a canonical Cartan connection; symplectic, complex,
contact structures are examples of flexible structures.

Using the concept of a Möbius structure, defined by D. Calderbank as a linear second order differential operator of a cer-
tain type [4], and also using a Laplace structure (a variant of the conformal Laplacian) to rigidify a curve, we create a setting
conformal-Möbius–Laplace for which the questions of submanifold geometry can be studied without conditions on the di-
mension (see also [5]).

In particular, on aMöbius surface or a Laplace curve, the concept of a conformal (or ratherMöbius, resp. Laplace) geodesic
is well-defined, and denotes, as well, the family of curves that are solutions to a 3rd order ODE. Technically, these equations
are given, in terms of a conformal covariant derivative (Weyl structure) and of its associated Schouten–Weyl tensor, and this
tensor is defined, in low dimensions, precisely by the corresponding additional structure (Möbius, resp. Laplace) [5]. The
invariants of, and induced structures on a conformal embedding are also defined in terms of these Schouten–Weyl tensors,
the distinction between them being the following:

• An intrinsic structure is one that can be defined and considered in terms of the submanifold alone, without any reference
to the embedding: it is the case of the induced conformal, Möbius and Laplace structures [5].

• An extrinsic kind of structure refers explicitly to (some infinitesimal version – like the normal bundle – of) the embedding
of the submanifold in its conformal (orMöbius) ambient space: it is the case of some tensorial invariants of the embedding
and of the induced connection on the weightless normal bundle.

Geometrically, a Laplace structure on a curve is a projective structure [6,7,5], and the global projective geometry of a
closed curve in a conformal (or Möbius) ambient space turns out to be a very interesting, and largely unknown problem, as
a forthcoming paper shows [8].

After a preliminary section where we recall some basic facts of conformal geometry (weight bundles, Weyl structures,
and curvature decompositions), with a particular focus on low dimensions, we review in Section 3 the theory ofMöbius and
Laplace structures [5] on conformal manifolds, structures that are rigid in small dimensions as well.

Section 4 (Extrinsic conformal geometry) is divided into 3 parts: in Section 4.1 we recall the definition and properties of
the conformal geodesic equation [2,3]. In Section 4.2 we review the relation betweenWeyl structures on submanifolds and
on the ambient space [3,5], and introduce certain tensorial invariants of a conformal embedding: the (well-known) trace-
free fundamental form, the curvature of the normal bundle and themixed and the relative Schouten–Weyl tensor. We show
in Theorem 4.22 that any given such tensorial objects on a given manifold and on its normal bundle can be realized as the
invariants of an embedding in some ambient space. In Section 4.3, we review the induced Möbius and Laplace structures on
a submanifold (theMöbius reduction of [5]) and relate them to the previously introduced relative Schouten–Weyl tensor.

In Section 5,we show that the invariant tensors (from Section 4.2) of an embedding turn out to be obstructions for various
properties that generalize, in the conformal context, the totally geodesic submanifolds of Riemannian geometry.

More precisely, a submanifold is called totally umbilic if it is totally geodesic for some metric in the conformal class, it is
weakly geodesic if it is spanned by conformal geodesics in the ambient space, and strongly geodesic if its conformal geodesics
are also conformal geodesics in the ambient space (for dimensions 1 or 2, the conformal structure of the (sub)manifold needs
to be completed (for rigidity) by a Laplace, resp. Möbius structure).

Finally, these different kinds of geodesic properties of a submanifold are shown to satisfy some implications (among
which the fact that strongly geodesic implies weakly geodesic turns out to be non-trivial), and can be characterized by the
vanishing of some of the above mentioned tensorial invariants, Theorem 5.4.

2. Preliminaries on conformal geometry

In this section, we review the main notions needed in conformal geometry. Good references are [9,10], however we
need to push some of the formulas beyond their usual lower bound for the dimension, like in [4] (in particular for the
Schouten–Weyl tensor and the normalized scalar curvature); a reader familiar with the formalism of weight bundles, Weyl
structures, etc., may jump directly to Proposition 2.11.

2.1. Weight bundles

Let M be a m-dimensional manifold with density bundle |Λ|M . This is an oriented line bundle, hence topologically (but
non-canonically) trivial, whose positive sections are the volume elements of M , allowing the integration of functions on the
manifold; it is isomorphic, if M is oriented, with ΛmM , the bundle of m-forms on M (the isomorphism depends on the
orientation). Denote by L the dual (or inverse) of themth root of |Λ|M , thus |Λ|M ≃ L−m.

A conformal structure onM is a positive-definite symmetric bilinear form c on TM with values in the line bundle L2 := L⊗L,
or, equivalently, a non-degenerate section c ∈ C∞(S2M ⊗ L2) (here we denote by S2M the bundle of symmetric bilinear
forms on TM), with the following normalization condition:

| det c| : (ΛmTM)2 → (L2)m

is the identity. (Note that (ΛmM)2 ≃ (|Λ|M)2 ≃ L2m.)
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