Torus action on the moduli spaces of torsion plane sheaves of multiplicity four

Jinwon Choi ${ }^{\text {a }}$, Mario Maican ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722, Republic of Korea
${ }^{\mathrm{b}}$ Institute of Mathematics of the Romanian Academy, Calea Grivitei 21, Bucharest 010702, Romania

A R T I C L E IN F O

Article history:

Received 4 March 2014
Accepted 12 May 2014
Available online 17 May 2014

MSC:

14D22

Keywords:

Semi-stable sheaves
Equivariant sheaves
Białynicki-Birula decomposition
Torus localization
Betti numbers

Abstract

We describe the torus fixed locus of the moduli space of stable sheaves with Hilbert polynomial $4 m+1$ on \mathbb{P}^{2}. We determine the torus representation of the tangent spaces at the fixed points, which leads to the computation of the Betti and Hodge numbers of the moduli space. © 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let $M=M_{\mathbb{P}^{2}}(4,1)$ denote the moduli space of Gieseker semi-stable sheaves \mathcal{F} on $\mathbb{P}^{2}=\mathbb{P}^{2}(\mathbb{C})$ having Hilbert polynomial $P_{\mathcal{F}}(m)=4 m+1$. According to [1], M is an irreducible smooth projective variety of dimension 17 . Our aim is to classify the torus fixed locus of M under the natural torus action induced from the torus action on the base space \mathbb{P}^{2}, which in turn enables us to compute the additive structure of its homology groups with coefficients in \mathbb{Z}. For this we will use the theory of Białynicki-Birula [2-4], which we review in Section 2.

More precisely, we will consider the natural action of $T=\left(\mathbb{C}^{*}\right)^{2}$ defined as follows: first, T acts on \mathbb{P}^{2} by $\left(t_{1}, t_{2}\right) \cdot\left(x_{0}, x_{1}\right.$, $\left.x_{2}\right)=\left(x_{0}, t_{1}^{-1} x_{1}, t_{2}^{-1} x_{2}\right)$; denote by $\mu_{t}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ the action map. Now put $t[\mathcal{F}]=\left[\mu_{t^{-1}}^{*} \mathcal{F}\right]$, where $[\mathcal{F}]$ denotes the stableequivalence class of the sheaf \mathcal{F}. For this action we will prove the following theorem:

Theorem 1.1. The fixed point locus of $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$ consists of 180 isolated points and 6 one-dimensional components isomorphic to \mathbb{P}^{1}. Furthermore, the integral homology of $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$ has no torsion and its Poincaré polynomial is

$$
\begin{aligned}
P_{\mathbb{M}_{\mathbb{P}^{2}}(4,1)}(x)= & 1+2 x^{2}+6 x^{4}+10 x^{6}+14 x^{8}+15 x^{10}+16 x^{12}+16 x^{14}+16 x^{16} \\
& +16 x^{18}+16 x^{20}+16 x^{22}+15 x^{24}+14 x^{26}+10 x^{28}+6 x^{30}+2 x^{32}+x^{34} .
\end{aligned}
$$

The geometry of the moduli space M has been studied by many authors [5-8]. In [9], it was conjectured that genus zero Gopakumar-Vafa (or BPS) invariant defined in M-theory is equal to the Euler characteristic of the moduli space $\mathrm{M}_{\mathbb{P}^{2}}(r, 1)$

[^0]up to sign. When $r \leq 3$, the moduli spaces are well known by the work of Le Potier [1]. When $r=4$, the conjecture was first checked in [7] where the author uses a stratification of the moduli space with respect to the global section spaces. The Poincaré polynomials of the moduli spaces when $r=4$ and 5 have been computed in [5] by a wall-crossing technique in the moduli spaces of α-stable pairs, and also in [8] by the classification of the semi-stable sheaves carried out in [6,10]. Recently, a B-model calculation in physics computes the Poincaré polynomial up to $r=7$ [11, Table 2] in terms of the refined BPS indices. From a mathematical point of view this calculation is a conjecture. A more mathematical treatment for the refined BPS index can be found in [12]. The Poincaré polynomial in Theorem 1.1 agrees with all these previous works.

We will use two approaches to determine M^{T}. In Section 3, following [13], we will regard a T-fixed sheaf as a T-equivariant sheaf and we will classify all T-equivariant sheaves in terms of T-representations on each affine open subset. In Section 5 , we will use the classification of semi-stable sheaves on \mathbb{P}^{2} with Hilbert polynomial $4 m+1$ carried out in [6].

The Poincaré polynomial can then be computed by analyzing the local structure of the moduli spaces around the fixed locus, that is, by determining the T-action on the tangent spaces at the fixed points. For this, we will use two approaches as well. In Section 4, we will use the technique developed in [14]. Using the T-representations of sheaves on each affine open subset and the associated Čech complex, we compute the T-representation of the tangent spaces. In Section 6, we will exploit the locally closed stratification of $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$ found in [6].

The first approach can, in principle, be applied to any non-singular moduli space $\mathrm{M}_{\mathbb{P}^{2}}(r, \chi)$ of semi-stable sheaves on \mathbb{P}^{2} with Hilbert polynomial $r m+\chi$, though, of course, for higher multiplicity the calculations will be considerably more involved. The second approach can be extended to semi-stable sheaves supported on plane quintics or sextics, for which the classification has been carried out, cf. [10] and [15].

Theorem 1.1 also allows us to compute the Hodge numbers $h^{p q}$ of $M_{\mathbb{P}^{2}}(4,1)$. According to [16, Theorem 1], for any oneparameter subgroup λ of $T, h^{p q}=0$ if $|p-q|>\operatorname{dim}\left(\mathrm{M}^{\lambda}\right)$. Choosing a generic λ we see that $h^{p q}=0$ if $|p-q|>\operatorname{dim}\left(\mathrm{M}^{T}\right)=1$. We obtain the following:

Proposition 1.2. The Hodge numbers $h^{p q}, 0 \leq p, q \leq 17$, of $M_{\mathbb{P}^{2}}(4,1)$ satisfy the relations $h^{p q}=0$ if $p \neq q$ and $h^{p p}=b_{2 p}$, where $b_{2 p}$ is the Betti number obtained in Theorem 1.1.

2. A review of the Białynicki-Birula theory

As a preliminary, we briefly review the theory of Białynicki-Birula which will be used throughout the paper. Let X be a smooth projective variety with an action of a torus T. As usual, we denote by M the group of characters of T, and by N the group of one-parameter subgroups of T. Consider $\lambda \in N$ and the associated \mathbb{C}^{*}-action on X defined by $(t, x) \mapsto \lambda(t) \cdot x$. Let $X_{1}^{\lambda}, \ldots, X_{r}^{\lambda}$ denote the irreducible components of the \mathbb{C}^{*}-fixed point locus X^{λ}. They are smooth subvarieties. We have a plus decomposition

$$
X=X_{1}^{\lambda+} \cup \cdots \cup X_{r}^{\lambda+}
$$

of X into plus cells

$$
X_{i}^{\lambda+}=\left\{x \in X \mid \lim _{t \rightarrow 0} \lambda(t) \cdot x \in X_{i}^{\lambda}\right\}
$$

Analogously, we have a minus decomposition of X into minus cells

$$
X_{i}^{\lambda-}=\left\{x \in X \mid \lim _{t \rightarrow \infty} \lambda(t) \cdot x \in X_{i}^{\lambda}\right\} .
$$

The plus and minus cells are bundles on X^{λ}. More precisely, for each i the restricted tangent bundle $\mathrm{T}_{X_{\mid X_{i}^{\lambda}}}$ can be decomposed as a direct sum of sub-bundles,

$$
\mathrm{T}_{X_{\mid X_{i}^{\lambda}}}=\mathrm{T}_{i}^{+} \oplus \mathrm{T}_{i}^{0} \oplus \mathrm{~T}_{i}^{-}
$$

on which \mathbb{C}^{*} acts with positive, zero, respectively negative weights. Denote $p(i)=\operatorname{rank}\left(\mathrm{T}_{i}^{+}\right), n(i)=\operatorname{rank}\left(\mathrm{T}_{i}^{-}\right)$. Then $X_{i}^{\lambda+}$ (respectively $X_{i}^{\lambda-}$) is a fiber bundle over X_{i}^{λ} whose fiber is an affine space of dimension $p(i)$ (respectively $n(i)$). From the plus and minus decompositions we obtain the Homology Basis Formula [4, Theorem 4.4]:

Theorem 2.1. For any integer m with $0 \leq m \leq 2 \operatorname{dim}(X)$, we have a decomposition

$$
\mathrm{H}_{m}(X, \mathbb{Z}) \simeq \bigoplus_{1 \leq i \leq r} \mathrm{H}_{m-2 p(i)}\left(X_{i}^{\lambda}, \mathbb{Z}\right) \simeq \bigoplus_{1 \leq i \leq r} \mathrm{H}_{m-2 n(i)}\left(X_{i}^{\lambda}, \mathbb{Z}\right)
$$

Thus, the Poincaré polynomial P_{X} of X satisfies the relation

$$
P_{X}(x)=\sum_{i=1}^{r} P_{X_{i}^{\lambda}}(x) x^{2 p(i)}=\sum_{i=1}^{r} P_{X_{i}^{\lambda}}(x) x^{2 n(i)} .
$$

According to [4, Lemma 4.1], for generic $\lambda \in N$ we have $X^{T}=X^{\lambda}$. In fact, this is true for all λ satisfying the condition: $\langle\lambda, \chi\rangle \neq 0$ for all $\chi \in M$ occurring in the weight decomposition of any tangent space $\mathrm{T}_{X, x}$ at a fixed point $\chi \in X^{T}$. Thus,

https://daneshyari.com/en/article/1898498

Download Persian Version:

https://daneshyari.com/article/1898498

Daneshyari.com

[^0]: * Corresponding author. Tel.: +40 720861976.

 E-mail addresses: jwchoi@kias.re.kr (J. Choi), mario.maican@imar.ro (M. Maican).

