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1. Introduction

The goal of this note is to present a definition and to discuss basic properties of cross-ratios over (noncommutative)
division rings or skew-fields. We present the noncommutative cross-ratios as products of quasi-Plücker coordinates
introduced in [1] (see also [2]). Actually, noncommutative cross-ratios were already mentioned in a remark in [1]. I decided
to return to the subject after my colleague Feng Luo explained to me the importance of cross-ratios in modern geometry
(see, for example, [3–5]).

2. Quasi-Plücker coordinates

We recall here only the theory of quasi-Plücker coordinates for 2 × n-matrices over a noncommutative division ring
F . For general k × n-matrices the theory is presented in [1,2]. Recall (see [6,7] and subsequent papers) that for a matrix
a1k a1i
a2k a2i


one can define four quasideterminants provided the corresponding elements are invertible: a1k a1i

a2k a2i

 = a1k − a1ia−1
2i a2k,

a1k a1i
a2k a2i

 = a1i − a1ka−1
2k a2i, a1k a1i

a2k a2i

 = a2k − a2ia−1
1i a1k,

a1k a1i
a2k a2i

 = a2i − a2ka−1
1k a1i.

Let A =


a11 a12 . . . a1n
a21 a22 . . . a2n


be a matrix over F .

Lemma 2.1. Let i ≠ k. Thena1k a1i
a2k a2i

−1 a1k a1j
a2k a2j

 =

a1k a1i
a2k a2i

−1 a1k a1j
a2k a2j

−1

if the corresponding expressions are defined.
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Note that in the formula the boxed elements on the left and on the right must be on the same level.

Definition 2.2. We call the expressions

qkij(A) =

a1k a1i
a2k a2i

−1 a1k a1j
a2k a2j

 =

a1k a1i
a2k a2i

−1 a1k a1j
a2k a2j

−1

the quasi-Plücker coordinates of matrix A.

Our terminology is justified by the following observation. Recall that in the commutative case the expressions

pik(A) =

a1i a1k
a2i a2k

 = a1ia2k − a1ka2i

are the Plücker coordinates of A. One can see that in the commutative case

qkij(A) =
pjk(A)

pik(A)
,

i.e. quasi-Plücker coordinates are ratios of Plücker coordinates.
Let us list properties of quasi-Plücker coordinates over (noncommutative) division ringF .We sometimeswrite qkij instead

of qkij(A) where it cannot lead to a confusion.
(1) Let g be an invertible 2 by 2 matrix over F . Then

qkij(g · A) = qkij(A).

(2) Let Λ = diag (λ1, λ2, . . . , λn) be an invertible diagonal matrix over F . Then

qkij(A · Λ) = λ−1
i · qkij(A) · λj.

(3) If j = k then qkij = 0; if j = i then qkij = 1 (we always assume i ≠ k).
(4) qkij · q

k
jℓ = qkiℓ. In particular, qkijq

k
ji = 1.

(5) ‘‘Noncommutative skew-symmetry’’: For distinct i, j, k

qkij · q
i
jk · qjki = −1.

One can also rewrite this formula as qkijq
i
jk = −qjik.

(6) ‘‘Noncommutative Plücker identity’’: For distinct i, j, k, ℓ

qkijq
ℓ
ji + qkiℓq

j
ℓi = 1.

One can easily check two last formulas in the commutative case. In fact,

qkij · q
i
jk · qjki =

pjkpkipij
pikpjipkj

= −1

because Plücker coordinates are skew-symmetric: pij = −pji for any i, j.
Also, assuming that i < j < k < ℓ

qkijq
ℓ
ji + qkiℓq

j
ℓi =

pjkpiℓ
pikpjℓ

+
pℓkpij
pikpℓj

.

Because pℓk
pℓj

=
pkℓ
pjℓ

, the last expression equals

pjkpiℓ
pikpjℓ

+
pkℓpij
pikpjℓ

=
pijpkℓ + piℓpjk

pikpjℓ
= 1

due to the celebrated Plücker identity

pijpkℓ − pikpjℓ + piℓpjk = 0.

Remark 2.3. We presented here a theory of the left quasi-Plücker coordinates for 2 by nmatrices where n > 2. A theory of
the right quasi-Plücker coordinates for n by 2 or, more generally, for n by kmatrices where n > k can be found in [1,2].

3. Definition and basic properties of cross-ratios

We define cross-ratios over (noncommutative) division ring F by imitating the definition of classical cross-ratios in
homogeneous coordinates, namely, if the four points are represented in homogeneous coordinates by vectors a, b, c, d such
that c = a + b and d = ka + b, then their cross-ratio is k.
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