Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Noncommutative cross-ratios

Vladimir Retakh

Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

ARTICLE INFO

ABSTRACT

Article history: Received 23 February 2014 Accepted 1 April 2014 Available online 8 April 2014 We present a definition and discuss basic properties of cross-ratios over noncommutative skew-fields.

© 2014 Elsevier B.V. All rights reserved.

Keywords: Cross-ratio Quasideterminant Quasi-Plücker coordinate

1. Introduction

The goal of this note is to present a definition and to discuss basic properties of cross-ratios over (noncommutative) division rings or skew-fields. We present the noncommutative cross-ratios as products of quasi-Plücker coordinates introduced in [1] (see also [2]). Actually, noncommutative cross-ratios were already mentioned in a remark in [1]. I decided to return to the subject after my colleague Feng Luo explained to me the importance of cross-ratios in modern geometry (see, for example, [3–5]).

2. Quasi-Plücker coordinates

We recall here only the theory of quasi-Plücker coordinates for $2 \times n$ -matrices over a noncommutative division ring \mathcal{F} . For general $k \times n$ -matrices the theory is presented in [1,2]. Recall (see [6,7] and subsequent papers) that for a matrix $\begin{pmatrix} a_{1k} & a_{1i} \\ a_{2k} & a_{2i} \end{pmatrix}$ one can define four quasideterminants provided the corresponding elements are invertible:

 $\begin{vmatrix} a_{1k} & a_{1i} \\ a_{2k} & a_{2i} \end{vmatrix} = a_{1k} - a_{1i}a_{2i}^{-1}a_{2k}, \qquad \begin{vmatrix} a_{1k} & a_{1i} \\ a_{2k} & a_{2i} \end{vmatrix} = a_{1i} - a_{1k}a_{2k}^{-1}a_{2i},$ $\begin{vmatrix} a_{1k} & a_{1i} \\ a_{2k} & a_{2i} \end{vmatrix} = a_{2k} - a_{2i}a_{1i}^{-1}a_{1k}, \qquad \begin{vmatrix} a_{1k} & a_{1i} \\ a_{2k} & a_{2i} \end{vmatrix} = a_{2i} - a_{2k}a_{1k}^{-1}a_{1i}.$

Let $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \end{pmatrix}$ be a matrix over \mathcal{F} .

Lemma 2.1. Let $i \neq k$. Then

 $\begin{vmatrix} a_{1k} & \boxed{a_{1i}} \\ a_{2k} & a_{2i} \end{vmatrix}^{-1} \begin{vmatrix} a_{1k} & \boxed{a_{1j}} \\ a_{2k} & \boxed{a_{2j}} \end{vmatrix} = \begin{vmatrix} a_{1k} & a_{1i} \\ a_{2k} & \boxed{a_{2i}} \end{vmatrix}^{-1} \begin{vmatrix} a_{1k} & a_{1j} \\ a_{2k} & \boxed{a_{2j}} \end{vmatrix}$

if the corresponding expressions are defined.

E-mail address: vretakh@math.rutgers.edu.

http://dx.doi.org/10.1016/j.geomphys.2014.04.001 0393-0440/© 2014 Elsevier B.V. All rights reserved.

Note that in the formula the boxed elements on the left and on the right must be on the same level.

Definition 2.2. We call the expressions

$$q_{ij}^{k}(A) = \begin{vmatrix} a_{1k} & a_{1i} \\ a_{2k} & a_{2i} \end{vmatrix}^{-1} \begin{vmatrix} a_{1k} & a_{1j} \\ a_{2k} & a_{2j} \end{vmatrix} = \begin{vmatrix} a_{1k} & a_{1i} \\ a_{2k} & a_{2i} \end{vmatrix}^{-1} \begin{vmatrix} a_{1k} & a_{1j} \\ a_{2k} & a_{2j} \end{vmatrix}^{-1}$$

the quasi-Plücker coordinates of matrix A.

Our terminology is justified by the following observation. Recall that in the commutative case the expressions

$$p_{ik}(A) = \begin{vmatrix} a_{1i} & a_{1k} \\ a_{2i} & a_{2k} \end{vmatrix} = a_{1i}a_{2k} - a_{1k}a_{2i}$$

are the Plücker coordinates of A. One can see that in the commutative case

$$q_{ij}^k(A) = \frac{p_{jk}(A)}{p_{ik}(A)},$$

.

i.e. guasi-Plücker coordinates are ratios of Plücker coordinates.

Let us list properties of quasi-Plücker coordinates over (noncommutative) division ring \mathcal{F} . We sometimes write q_{ii}^k instead of $q_{ii}^k(A)$ where it cannot lead to a confusion.

(1) Let g be an invertible 2 by 2 matrix over $\mathcal F$. Then

$$q_{ij}^{\kappa}(g \cdot A) = q_{ij}^{\kappa}(A).$$

(2) Let $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ be an invertible diagonal matrix over \mathcal{F} . Then

$$q_{ij}^{k}(A \cdot \Lambda) = \lambda_{i}^{-1} \cdot q_{ij}^{k}(A) \cdot \lambda_{j}.$$

(3) If j = k then $q_{ij}^k = 0$; if j = i then $q_{ij}^k = 1$ (we always assume $i \neq k$).

4)
$$q_{ii}^k \cdot q_{i\ell}^k = q_{i\ell}^k$$
. In particular, $q_{ii}^k q_{ii}^k = 1$

(5) "Noncommutative skew-symmetry": For distinct i, j, k

$$q_{ii}^k \cdot q_{ik}^i \cdot q_{ki}^j = -1.$$

One can also rewrite this formula as $q_{ij}^k q_{jk}^i = -q_{ik}^j$. (6) "Noncommutative Plücker identity": For distinct *i*, *j*, *k*, ℓ

$$q_{ii}^k q_{ii}^\ell + q_{i\ell}^k q_{\ell i}^l = 1$$

One can easily check two last formulas in the commutative case. In fact,

$$q_{ij}^k \cdot q_{jk}^i \cdot q_{ki}^j = \frac{p_{jk}p_{ki}p_{ij}}{p_{ik}p_{ji}p_{kj}} = -1$$

because Plücker coordinates are skew-symmetric: $p_{ij} = -p_{ji}$ for any i, j.

Also, assuming that $i < j < k < \ell$

$$q_{ij}^k q_{ji}^\ell + q_{i\ell}^k q_{\ell i}^j = \frac{p_{jk} p_{i\ell}}{p_{ik} p_{j\ell}} + \frac{p_{\ell k} p_{ij}}{p_{ik} p_{\ell j}}.$$

Because $\frac{p_{\ell k}}{p_{\ell i}} = \frac{p_{k\ell}}{p_{i\ell}}$, the last expression equals

$$\frac{p_{jk}p_{i\ell}}{p_{ik}p_{i\ell}} + \frac{p_{k\ell}p_{ij}}{p_{ik}p_{j\ell}} = \frac{p_{ij}p_{k\ell} + p_{i\ell}p_{jk}}{p_{ik}p_{i\ell}} = 1$$

due to the celebrated Plücker identity

$$p_{ij}p_{k\ell}-p_{ik}p_{j\ell}+p_{i\ell}p_{jk}=0.$$

Remark 2.3. We presented here a theory of the *left* quasi-Plücker coordinates for 2 by n matrices where n > 2. A theory of the *right* quasi-Plücker coordinates for *n* by 2 or, more generally, for *n* by *k* matrices where n > k can be found in [1,2].

3. Definition and basic properties of cross-ratios

We define cross-ratios over (noncommutative) division ring \mathcal{F} by imitating the definition of classical cross-ratios in homogeneous coordinates, namely, if the four points are represented in homogeneous coordinates by vectors a, b, c, d such that c = a + b and d = ka + b, then their cross-ratio is k.

Download English Version:

https://daneshyari.com/en/article/1898518

Download Persian Version:

https://daneshyari.com/article/1898518

Daneshyari.com