ELSEVIER

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

On the local structure of noncommutative deformations

Zouhair Saassai*, Mohamed Boucetta

Université Cadi Ayyad, Faculté des Sciences et Techniques Gueliz, BP 549, 40000 Marrakech, Morocco

ARTICLE INFO

Article history:
Received 14 November 2013
Received in revised form 18 March 2014
Accepted 6 April 2014
Available online 13 April 2014

MSC: primary 58B34 53D17

Keywords:
Contravariant connections
Metacurvature
Noncommutative deformations

ABSTRACT

Let (M,π,\mathfrak{D}) be a Poisson manifold endowed with a flat, torsion-free contravariant connection. We show that if \mathfrak{D} is an \mathcal{F} -connection then there exists a tensor \mathbf{T} such that $\mathfrak{D}\mathbf{T}$ is the metacurvature tensor introduced by \mathbf{E} . Hawkins in his work on noncommutative deformations. We compute \mathbf{T} and the metacurvature tensor in this case and show that if $\mathbf{T}=0$ then near any regular point π and \mathfrak{D} are defined in a natural way by a Lie algebra action and a solution of the classical Yang–Baxter equation. Moreover, when \mathfrak{D} is the contravariant Levi-Civita connection associated to π and a Riemannian metric, the Lie algebra action can be chosen in such a way that it preserves the metric. This solves the inverse problem of a result of the second author.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and main result

In [1,2] Hawkins showed that if a deformation of the graded algebra $\Omega^*(M)$ of differential forms on a Riemannian manifold M comes from a spectral triple describing M, then the Poisson tensor π (which characterizes the deformation) and the Riemannian metric satisfy the following conditions:

- (H_1) the associated metric contravariant connection \mathcal{D} is flat;
- (H_2) the metacurvature of \mathcal{D} vanishes;
- (H_3) π is compatible with the Riemannian volume μ , i.e., $d(i_\pi \mu) = 0$.

The metric contravariant connection associated naturally to any pair of a (pseudo-)Riemannian metric and a Poisson tensor is the contravariant analogue of the classical Levi-Civita connection; it has appeared first in [3]. The metacurvature, introduced in [2], is a (2, 3)-type tensor field (symmetric in the contravariant indices and antisymmetric in the covariant indices) associated naturally to any flat, torsion-free contravariant connection.

The main result of Hawkins [2, Theorem 6.6 and also Lemma 6.5] states that if (M, π, g) is a triple satisfying (H_1) – (H_3) with M compact, then around any regular point $x_0 \in M$ the Poisson tensor can be written as

$$\pi = \sum_{i,i} a^{ij} X_i \wedge X_j \tag{1}$$

where the matrix (a^{ij}) is constant and invertible and $\{X_1, \ldots, X_s\}$ is a family of linearly independent commuting Killing vector fields.

On the other hand, the second author showed in [4] that if $\zeta: \mathfrak{g} \to \mathfrak{X}^1(M)$ is an action of a finite-dimensional real Lie algebra \mathfrak{g} on a smooth manifold M and $r \in \wedge^2 \mathfrak{g}$ is a solution of the classical Yang–Baxter equation, then:

E-mail addresses: z.saassai@gmail.com, z.saassai@hotmail.fr (Z. Saassai), mboucetta2@yahoo.fr (M. Boucetta).

^{*} Corresponding author.

(a) The map $\mathcal{D}^r: \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M)$ given by

$$\mathcal{D}_{\alpha}^{r}\beta := \sum_{i,j=1}^{n} a^{ij} \alpha(\zeta(u_{i})) \mathcal{L}_{\zeta(u_{j})}\beta, \tag{2}$$

where $\{u_1, \ldots, u_n\}$ is any basis of \mathfrak{g} and a^{ij} are the components of r in this basis, depends only on r and ζ and defines a flat, torsion-free contravariant connection with respect to the Poisson tensor $\pi^r := \zeta(r)$.

- (b) If M is Riemannian and ζ preserves the metric, \mathcal{D}^r is nothing else but the metric contravariant connection associated to the metric and π^r .
- (c) If \mathfrak{g} acts freely on M, the metacurvature of \mathfrak{D}^r vanishes.

In this setting, (1) can be re-expressed by saying that there exists a free action $\zeta: \mathfrak{g} \to \mathfrak{X}^1(U)$ of a finite-dimensional abelian Lie algebra \mathfrak{g} on an open neighborhood $U \subseteq M$ of x_0 which preserves g, and a solution $r \in \wedge^2 \mathfrak{g}$ of the classical Yang–Baxter equation such that $\pi = \pi^r$. Moreover, since ζ preserves g, then $\mathfrak{D} = \mathfrak{D}^r$ by (b). It follows that \mathfrak{D} is a Poisson connection, i.e., $\mathfrak{D}\pi = 0$ and hence an \mathcal{F}^{reg} -connection (see [5]).

Given a flat, torsion-free \mathcal{F}^{reg} -connection \mathcal{D} on a Poisson manifold (M, π) , we shall see that there exists a (2, 2)-type tensor field **T** on the dense open set of regular points such that

- (i) $\mathcal{D}\mathbf{T} = \mathcal{M}$ where \mathcal{M} is the metacurvature of \mathcal{D} ;
- (ii) **T** vanishes if and only if the exterior differential of any parallel 1-form is also parallel.

By looking at the proof of the second author's result closely, one observes that in proving (c) the second author showed that \mathcal{D}^r is an \mathcal{F}^{reg} -connection and that whenever a 1-form is \mathcal{D}^r -parallel then so is its exterior differential, meaning that **T** vanishes. Accordingly, (c) can be rephrased as follows:

(c') If g acts freely on M, \mathcal{D}^r is an \mathcal{F}^{reg} -connection and T vanishes (and hence so does \mathcal{M}).

Note that in the case studied by Hawkins ${\bf T}$ vanishes since as we saw above the action ζ is free. So it is natural to consider the following problem, inverse of the second author's result: Given a smooth manifold ${\bf M}$ endowed with a Poisson tensor π and a Riemannian metric ${\bf g}$ such that the associated metric contravariant connection is a flat ${\mathcal F}^{\rm reg}$ -connection and such that ${\bf T}=0$, is there a free action of a finite-dimensional Lie algebra ${\bf g}$ preserving ${\bf g}$ and a solution ${\bf r}\in \wedge^2{\bf g}$ of the classical Yang–Baxter equation such that $\pi=\pi^r$ and ${\bf D}={\bf D}^r$?

The main result of this paper answers in the affirmative to that question in a more general setting. More precisely,

Theorem 1.1. Let (M, π, \mathcal{D}) be a Poisson manifold endowed with a flat, torsion-free contravariant connection.

- (1) If \mathcal{D} is an \mathcal{F}^{reg} -connection and $\mathbf{T} = 0$, then for any regular point x_0 with rank 2r, there exists a free action $\zeta: \mathfrak{g} \to \mathfrak{X}(U)$ of a 2r-dimensional real Lie algebra \mathfrak{g} on a neighborhood U of x_0 , and an invertible solution $r \in \wedge^2 \mathfrak{g}$ of the classical Yang–Baxter equation, such that $\pi = \pi^r$ and $\mathcal{D} = \mathcal{D}^r$.
- (2) Moreover, if \mathcal{D} is the metric contravariant connection associated to π and a Riemannian metric g, then the action can be chosen in such a way that its fundamental vector fields are Killing.

The paper is organized as follows. In Section 2, we recall some standard facts about contravariant connections and the metacurvature tensor; we also define the tensor **T**. Section 3 is devoted to the computation of the metacurvature tensor (and the tensor **T** as well) in the case of an \mathcal{F}^{reg} -connection. In Section 4, we give a proof of Theorem 1.1.

Notation 1.2. For a smooth manifold M, $\mathcal{C}^{\infty}(M)$ will denote the space of smooth functions on M, $\Gamma(V)$ will denote the space of smooth sections of a vector bundle V over M, $\Omega^p(M) := \Gamma(\wedge^p T^*M)$ will denote the space of differential p-forms, and $\mathfrak{X}^p(M) := \Gamma(\wedge^p TM)$ will denote the space of p-vector fields.

For a Poisson tensor π on M, we will denote by $\pi_{\sharp}: T^*M \to TM$ the anchor map defined by $\beta(\pi_{\sharp}(\alpha)) = \pi(\alpha, \beta)$, and by H_f the Hamiltonian vector field of a function f, that is, $H_f := \pi_{\sharp}(df)$. We will also denote by $[,]_{\pi}$ the Koszul–Schouten bracket on differential forms (see, e.g., [6]); this is given on 1-forms by

$$[\alpha, \beta]_{\pi} = \mathcal{L}_{\pi_{\sharp}(\alpha)}\beta - \mathcal{L}_{\pi_{\sharp}(\beta)}\alpha - d(\pi(\alpha, \beta)).$$

The symplectic foliation of (M, π) will be denoted by δ , and $T\delta = \operatorname{Im} \pi_{\sharp}$ will be its associated tangent distribution. Finally, we will denote by M^{reg} the dense open set where the rank of π is locally constant.

2. Preliminaries

2.1. Contravariant connections

Contravariant connections on Poisson manifolds were defined by Vaismann [7] and studied in detail by Fernandes [8]. These connections play an important role in Poisson geometry (see for instance [8,9]) and have recently turned out to be useful in other branches of mathematics (e.g., [1,2]).

Download English Version:

https://daneshyari.com/en/article/1898521

Download Persian Version:

https://daneshyari.com/article/1898521

<u>Daneshyari.com</u>