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a b s t r a c t

We show that if two 4-dimensional metrics of arbitrary signature on one manifold are
geodesically equivalent (i.e., have the same geodesics considered as unparameterized
curves) and are solutions of the Einstein field equationwith the same stress–energy tensor,
then they are affinely equivalent or flat. If we additionally assume that the metrics are
complete or that the manifold is closed, the result remains valid in all dimensions ≥3.

© 2014 Elsevier B.V. All rights reserved.

1. Definitions and results

Let (Mn, g) be a connected pseudo-Riemannian manifold of arbitrary signature of dimension n ≥ 3.
We say that a metric ḡ onMn is geodesically equivalent to g , if every geodesic of g is a (possibly, reparametrized) geodesic

of ḡ . We say that ḡ is affinely equivalent to g , if the Levi-Civita connections of g and ḡ coincide.
In this paper we study the question whether two geodesically equivalent metrics g and ḡ can satisfy the Einstein field

equation with the same stress–energy tensor:

Rij −
R
2

· gij = R̄ij −
R̄
2

· ḡij, (1)

where Rij (R̄ij, respectively) is the Ricci tensor of the metric g (ḡ , respectively), and R := Rijg ij (R̄ := R̄ijḡ ij, respectively, ḡkℓ is
the tensor dual to ḡij: ḡ siḡsj = δij) is the scalar curvature.

There exist the following trivial examples of such a situation:

1. If geodesically equivalent metrics g and ḡ are flat, then their stress–energy tensors vanish identically and therefore
coincide. Examples of geodesically equivalent flat metrics are classically known and can be constructed as follows: take
the classical projective transformation p of (U ⊆ Rn, gstandard) (i.e., a local diffeomorphism that takes straight lines to
straight lines, there is a (n2

+ 2n)-dimensional group of it) and consider the pullback of the standard euclidean metric
gstandard; ḡ = p∗gstandard. It is clearly flat and geodesically equivalent to the initialmetric gstandard. If p is not a classical affine
transformation (the subgroup of affine transformations is n2

+ n-dimensional), ḡ is not affinely equivalent to gstandard.
2. If g and ḡ are affinely equivalent metrics with vanishing scalar curvature, then their stress–energy tensors coincide

with the Ricci tensors and therefore coincide (since even Riemannian curvature tensors coincide). There are many
examples of such a situation, a possibly simplest one is as follows: Take an arbitrary metric h = hij, i, j = 2, . . . , n
of zero scalar curvature on Rn−1(x2, . . . , xn) and consider the direct product metric g = dx21 +

n
i,j=2 hijdxidxj on
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Rn
= R(x1) × Rn−1(x2, . . . , xn). Then, for this metric, and also for the (affinely equivalent) metric g = dx21 + 2

n
i,j=2

hijdxidxj, the scalar curvature is zero.
3. The metric ḡ := const · g has the same stress–energy tensor as g . Indeed, Rij = R̄ij, and R̄ := ḡ ijRij =

1
constR so Rgij =

1
constR · const gij = R̄ḡij.

In the present paper we show that in dimensions 3 and 4 this list of trivial examples contains all possibilities:

Theorem 1. If two geodesically equivalent metrics g and ḡ on a connected manifold M of dimension 3 or 4 satisfy (1), then at
least one of the following possibilities takes place:

1. g and ḡ are affinely equivalent metrics with zero scalar curvature, or
2. g and ḡ are flat, or
3. ḡ = const g for a certain const ∈ R.

By this theorem, unparameterized geodesics determine the Levi-Civita connection of a 3 or 4-dimensional metric
uniquely within the solutions of the Einstein field equation with the same stress–energy tensor provided the metric is not
flat.

The motivation to study this question came from physics. It is known that geodesics of a space–time metric correspond
to the trajectories of the free falling uncharged particles, and that certain astronomical observations give the trajectories of
free falling uncharged particles as unparameterized curves; moreover, unparameterized geodesics and how and whether
they determine the metric were actively studied by theoretical physicists (cf. [1–4]) in the context of general relativity. The
space–time metric is a solution of the Einstein equation (there of course could be many solutions of the Einstein equation
with the same stress–energy tensor) and our theorem implies that if we know the (unparameterized) trajectories of free
falling uncharged particles and the stress–energy tensor, then we know (i.e., can in theory reconstruct) themetric or at least
the Levi-Civita connection of the metric.

The dimension 4 is probably the dimension that could be interesting for physics, since space–time metrics are naturally
4-dimensional. The result for dimension 3 is essentially easier; that is why we put it here. In dimension two, the stress–
energy tensor of every metric is identically zero and (the analog of) Theorem 1 is evidently wrong. It is also wrong in higher
dimensions, we show an example in dimensions ≥5. The metrics g and ḡ in this example both have zero scalar curvature
and their Riemannian curvature tensors coincide. We do not know whether all geodesically equivalent not affinely equiv-
alent metrics with the same stress–energy tensors have zero scalar curvature, but can show that the scalar curvature must
be constant.

Theorem 2. Suppose two nonproportional geodesically equivalent metrics g and ḡ on a connected manifold Mn of dimension
n ≥ 5 satisfy (1). Then, the scalar curvatures of the metrics are constant.

Combining this theoremwith [5,6], we obtain that in the global setting, when themanifold is closed (= compact without
boundary), or when both metrics are complete, the analog of Theorem 1 is still true in all dimensions.

We say that a (complete in both directions) g-geodesic γ : R → M is ḡ-complete, if there exists a diffeomorphism
τ : R → R such that the curve γ̄ := γ ◦ τ is a ḡ-geodesic.

Corollary 1. Let Mn be a connected manifold of dimension n ≥ 5. Suppose g and ḡ on Mn are geodesically equivalent and
satisfy (1). Assume in addition that g has indefinite signature and that every light-like g-geodesic γ is complete in both directions
and is ḡ-complete.

Then, the metrics are affinely equivalent.

Corollary 2. Suppose two geodesically complete geodesically equivalent metrics g and ḡ on a connected Mn, n ≥ 5, such that g
is positively definite or negatively definite, satisfy (1). Then, the metrics are affinely equivalent.

Corollary 3. Suppose two geodesically equivalent metrics g and ḡ on a closed connected Mn, n ≥ 5, satisfy (1). Then, the metrics
are affinely equivalent.

Probably the most famous special case of Theorem 1 that was known before is due to A. Z. Petrov [2] (see also [7,8]):
he showed that 4-dimensional Ricci-flat nonflat metrics of Lorentz signature cannot be geodesically equivalent, unless they are
affinely equivalent. It is one of the results for which Petrov obtained in 1972 the Lenin prize, the most important scientific
award of the Soviet Union.

Remark 1. We observe the same effect that was observed in [8]: as in [8], in dimension 4 we have a rigidity (in [8] it was
proved that 4-dimensional Einstein metrics of nonconstant curvature do not allow nontrivial geodesic equivalence. In every
dimension n ≥ 5 there exist Einstein metrics of nonconstant curvature that are geodesically equivalent but not affinely
equivalent). We do not have any conceptual explanation for this effect, and in our proof the dimension is used in many
arguments.



Download English Version:

https://daneshyari.com/en/article/1898543

Download Persian Version:

https://daneshyari.com/article/1898543

Daneshyari.com

https://daneshyari.com/en/article/1898543
https://daneshyari.com/article/1898543
https://daneshyari.com

