Real spectral triples over noncommutative Bieberbach manifolds

Piotr Olczykowski ${ }^{\text {a }}$, Andrzej Sitarz ${ }^{\text {b,*, }}{ }^{\text {1 }}$
${ }^{\text {a }}$ Copernicus Center for Interdisciplinary Studies, Sławkowska 17, 31-016 Kraków, Poland
${ }^{\text {b }}$ Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

ARTICLE INFO

Article history:

Received 14 January 2013
Received in revised form 7 May 2013
Accepted 17 May 2013
Available online 25 May 2013

MSC:

58B34
46L87
Keywords:
Noncommutative geometry
Spectral triple
Dirac operator

Abstract

We classify and construct all real spectral triples over noncommutative Bieberbach manifolds, which are restrictions of irreducible, real, equivariant spectral triples over the noncommutative three-torus. We show that, in the classical case, the constructed geometries correspond exactly to spin structures over Bieberbach manifolds and the Dirac operators constructed for a flat metric.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Bieberbach manifolds are compact manifolds, which are quotients of the Euclidean space by a free, properly discontinuous and isometric action of a discrete group. The torus is the canonical example of a Bieberbach manifold, however, the first nontrivial example appears in dimension 2 and is a Klein bottle. The case $d=3$ has already been described in the seminal works of Bieberbach [1,2]. In this paper we work with the dual picture, looking at the suitable algebra of functions on the Bieberbach manifold (and their noncommutative counterparts) in terms of a fixed point subalgebra of the relevant dense subalgebra of the C^{*} algebra of continuous functions on the three-torus and its corresponding noncommutative deformation $\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right)$.

1.1. Noncommutative Bieberbach manifolds

In this section we shall briefly recall the description of three-dimensional noncommutative Bieberbach manifolds as quotients of the three-dimensional noncommutative tori by the action of a finite discrete group. For details we refer to [3], here we present the notation and the results. Out of 10 different Bieberbach three-dimensional manifolds (six orientable, including the three-torus itself and four nonorientable ones) only six have noncommutative counterparts.

[^0]Table 1
The action of finite cyclic groups on $A\left(T_{\theta}^{3}\right)$.

Name	\mathbb{Z}_{N}	Generator	Action of \mathbb{Z}_{N} on U, V, W
$\mathrm{B2}_{\theta}$	\mathbb{Z}_{2}	$h, h^{2}=\mathrm{id}$	$h \triangleright U=-U, h \triangleright V=V^{*}, h \triangleright W=W^{*}$,
$\mathrm{B3}_{\theta}$	\mathbb{Z}_{3}	$h, h^{3}=\mathrm{id}$	$h \triangleright U=e^{\frac{2}{3} \pi i} U, h \triangleright V=e^{-\pi i \theta} V^{*} W, h \triangleright W=V^{*}$,
$\mathrm{B4}_{\theta}$	\mathbb{Z}_{4}	$h, h^{4}=\mathrm{id}$	$h \triangleright U=i U, h \triangleright V=W, h \triangleright W=V^{*}$,
$\mathrm{B6}_{\theta}$	\mathbb{Z}_{6}	$h, h^{6}=\mathrm{id}$	$h \triangleright U=e^{\frac{1}{3} \pi i} U, h \triangleright V=W, h \triangleright W=e^{-\pi i \theta} V^{*} W$,
$\mathrm{N1}_{\theta}$	\mathbb{Z}_{2}	$h, h^{2}=\mathrm{id}$	$h \triangleright U=U^{*}, h \triangleright V=-V, h \triangleright W=W$,
$\mathrm{N} 2_{\theta}$	\mathbb{Z}_{2}	$h, h^{2}=\mathrm{id}$	$h \triangleright U=U^{*}, h \triangleright V=-V, h \triangleright W=W U^{*}$,

Definition 1.1 (See [3]). Let $\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right)$ be an algebra of smooth elements on a three-dimensional noncommutative torus, which contains the polynomial algebra generated by three unitaries U, V, W satisfying relations,

$$
U V=V U, \quad U W=W U, \quad W V=e^{2 \pi i \theta} V W
$$

where $0<\theta<1$ is irrational. We define the algebras of noncommutative Bieberbach manifolds as the fixed point algebras of the following actions of finite groups G on $\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right)$, which are combined in Table 1.

We have shown in [3] that the actions of the cyclic groups $\mathbb{Z}_{N}, N=2,3,4,6$ on the noncommutative three-torus, as given in Table 1is free. The aim of this paper is to study and classify flat (i.e. restricted from flat geometries of the torus $\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right)$) real spectral geometries over the orientable noncommutative Bieberbachs.

2. Spectral triples over Bieberbachs

Since each noncommutative Bieberbach algebra is a subalgebra of the noncommutative torus, a restriction of the spectral triple over the latter to the subalgebra, gives a generic spectral triple over a noncommutative Bieberbach manifold, which might be, however, reducible. By restriction of a spectral triple $(\mathcal{A}, \pi, \mathscr{H}, D, J)$ to a subalgebra, $\mathcal{B} \subset \mathcal{A}$, we understand the triple $\left(\mathscr{B}, \pi, \mathscr{H}^{\prime}, D^{\prime}, J^{\prime}\right)$ where π^{\prime} is the restriction of π to $\mathscr{B}, \mathscr{H}^{\prime} \subset \mathscr{H}$ is a subspace invariant under the action of \mathscr{B}, D and J, so that D^{\prime}, J^{\prime} are their restrictions to \mathscr{H}^{\prime} (note that in the even case this must apply also to γ).

In what follows we shall show that, in fact, each spectral triple over Bieberbach is a restriction of a spectral triple over the torus, first showing that each spectral triple over Bieberbach can be lifted to a noncommutative torus.

2.1. The lift and the restriction of spectral triples

Lemma 2.1. Let $\left(B N_{\Theta}, \mathscr{H}, J, D\right)$ be a real spectral triple over a noncommutative Bieberbach manifold $B N_{\theta}$. Then, there exists a spectral triple over a three-torus, such that this triple is its restriction.
Proof. In [3] we showed that the crossed product algebra $\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right) \rtimes \mathbb{Z}_{N}$ is isomorphic to the matrix algebra of the noncommutative Bieberbach manifold algebra:

$$
\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right) \rtimes \mathbb{Z}_{N} \sim \mathrm{BN}_{\theta} \otimes M_{N}(\mathbb{C})
$$

First, let us recall that any spectral triple $\mathcal{A}, \mathcal{H}, D, J$ could be lifted to a spectral triple over $\mathcal{A} \otimes M_{n}(\mathbb{C})$. Indeed, if we take $\mathscr{H}^{\prime}=\mathscr{H} \otimes M_{n}(\mathbb{C})$ with the natural representation $\pi^{\prime}(a \otimes m)(h \otimes M)=\pi(a) h \otimes m M$, the diagonal Dirac operator and $J^{\prime}(h \otimes M)=J h \otimes U M^{\dagger} U^{\dagger}$, for an arbitrary unitary $U \in M_{n}(\mathbb{C})$ it is easy to see that we obtain again a real spectral triple. Applying this to the case of $\mathrm{B} N_{\theta}$, and identifying $\mathrm{B} N_{\theta} \otimes M_{N}(\mathbb{C})$ using the above isomorphism we obtain a spectral triple over $\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right) \rtimes \mathbb{Z}_{N}$. As $\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right)$ is a subalgebra of $\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right) \rtimes \mathbb{Z}_{N}$ by restriction we obtain, in turn, a spectral triple over a three-dimensional noncommutative torus. In fact, it is easy to see that we obtain a spectral triple, which is equivariant with respect to the action of a \mathbb{Z}_{N} group. Clearly, the fact that we have a representation of the crossed product algebra is just a rephrasing of the fact that we have a \mathbb{Z}_{N}-equivariant representation of $\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right)$. By definition, the Dirac operator lifted from the spectral triple over $\mathrm{B} N_{\theta}$ commutes with the group elements which are identified as matrices in $M_{N}(\mathbb{C})$. A little care is required to show that the lift of J would properly commute with the generator of \mathbb{Z}_{N}. However, since the lift of J involves a matrix U, it is sufficient to use a matrix, which provides a unitary equivalence between the generator h and its inverse h^{-1} of \mathbb{Z}_{N} in $M_{N}(\mathbb{C})$. Simple computation shows that the following $U, U_{00}=1, U_{k l}=\delta_{k, N-l}$ for $k, l=1, \ldots, N-1$ is the one providing the equivalence.

Hence, by this construction, we obtain a real, \mathbb{Z}_{N}-equivariant spectral triple over $\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right)$. It is easy to see that the original spectral triple over $B N_{\theta}$ is a restriction of the constructed spectral triple by taking the invariant subalgebra of $\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right)$, the \mathbb{Z}_{N}-invariant subspace of \mathscr{H} and the restriction of D and J.

Remark 2.2. The procedure described above does not necessarily provide the canonical (equivariant) Dirac operator over $\mathcal{A}\left(\mathbb{T}_{\theta}^{3}\right)$. Indeed, even a simple example of $\mathcal{A}\left(\mathbb{T}^{1}\right)$ shows that the lifted Dirac operator differs from the fully equivariant one by a bounded term. There may exist, however, a fully equivariant triple, so that its restriction is the same triple we started with.

https://daneshyari.com/en/article/1898568

Download Persian Version:

https://daneshyari.com/article/1898568

Daneshyari.com

[^0]: * Corresponding author. Tel.: +48 605269245.

 E-mail addresses: piotr.olczykowski@uj.edu.pl (P. Olczykowski), andrzej.sitarz@uj.edu.pl (A. Sitarz).
 1 Most of this work was carried out at the Institute of Mathematics of the Polish Academy of Sciences, Śniadeckich 8, Warszawa, 00-950 Poland.

