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a b s t r a c t

We solve the Björling problem for timelike surfaces in R4
2 constructing a special normal

frame and a split-complex representation formula. We use this solution to construct new
examples of timelike minimal surfaces and to define a notion of symmetry appropriate to
the indefinite setting. We also establish results describing various symmetries for this kind
of surface.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Björling problemhas been investigated in various settings over a long period of time andhas yieldedmany interesting
results. In 1844 Björling asked about the construction of a minimal surface in R3 containing a prescribed analytic strip.
Schwarz gave an explicit solution to this problem in 1890. Later, the Björling problem was considered in other ambient
spaces, including some with indefinite metrics. For instance in [1], they solved the problem for spacelike surfaces in L3,
while in [2] the solution to the Björling problem is established for timelike surfaces in L3. For codimensions bigger than
one, there is [3] and, more recently the paper of Asperti and Vilhena, [4], which studies the Björling problem for spacelike
surfaces in L4. Other references, using different ambient spaces, are [5,6,1,7,8].

In this paperwe solve the Börling problem for timelike surfaces inR4
2. To prove our results,we use the split-complex num-

bers (which are also known as the para-complex, double, Lorentz or hyperbolic numbers), henceforth denoted by C′. These
numbers are particularly useful when studying timelike surfaces. In fact, they allow us to import some of the formalisms
from complex variables used in the study of minimal surfaces. One of our long-term goals is to see how far the analogy with
complex analysis can be taken. This analogy is not perfect, because the split-complex numbers have zero divisors and, so,
for example, 1/z is singular on a pair of intersecting lines, not one point.

We chose the ambient space R4
2 because it is the direct sum of two copies of the split-complex numbers. Using this fact,

we find a convenient local normal frame to describe the Gauss map of the immersion, which we then utilize to find the
split-complex Björling representation formula for minimal timelike surfaces in R4

2. So as a first consequence, we recover the
split-complex representation formula of the Björling problem for minimal timelike surfaces in L3. In particular, to obtain
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our results, we identify the G−

2,4, the Grassmannian of oriented timelike planes in R4
2, with the quadric Q 2

1 = {[z] ∈ C′P3
2
−

|

(z, z) = 0}, where (, ) is a symmetric bilinear product associated to an indefinite Hermitian structure on C′ 4. The projective
space C′P3

2
− is the quotient space of H7

3 modulo the action by H1
= {λ ∈ C′

|λλ̄ = 1}. To give a unique solution to the
Björling problem we need only to consider the timelike and spacelike curves with a normal field. In other words, we must
exclude lightlike curves, which are related to the characteristic curves for the determining partial differential equation, just
as occurs in [2]. Thus we set up and study two Björling problems, namely, the timelike and spacelike Björling problems.

As part of our exploration of split-complex analysis, we prove the split-complex version of Schwarz reflection, and then
we introduce the notion of k-subspace of symmetry for timelike surfaces in R4

2, including degenerate and non-degenerate
subspaces. In fact, this definition is easily extended to any Rn

j . As noted below, our definition corrects an inconsistency
in [4]. Using these notions and our split-complex Björling representation formulas, we are able to describe three types of
symmetries for minimal timelike surfaces in R4

2 with respect to non-degenerate k-subspaces. For the degenerate subspace
case of type −0, we also obtain some information, assuming symmetry with respect to 2-plane of that type.

2. Preliminaries

Let R4
2 be R4 with the indefinite inner product

⟨(x1, x2, x3, x4), (y1, y2, y3, y4)⟩ = −x1y1 − x2y2 + x3y3 + x4y4,

which is our ambient space.
The definition of the cross-product in a three-dimensional vector space with metric b(u, v) is defined, in [9], to be:

b(u×b v, z) =

zuv
 = det

z
u
v


. (1)

So, for example, in the space where b((u2, u3, u4), (v2, v3, v4)) = −u2v2 + u3v3 + u4v4, which would occur when we
drop the first coordinate of elements in R4

2, one obtains

(u2, u3, u4)×b(v2, v3, v4) =

−i j k
u2 u3 u4
v2 v3 v4

 = (u4v3 − u3v4, u4v2 − u2v4, u2v3 − v2u3). (2)

For R4
2 we define the cross product � by

⟨�(u, v, w), x⟩ =


x
u
v
w

 , (3)

where u, v, w, x ∈ R4
2.

With this definition:

�(u, v, w) = αe1 + βe2 + γ e3 + δe4 (4)

where

α = −

u2 u3 u4
v2 v3 v4
w2 w3 w4

 , β =

u1 u3 u4
v1 v3 v4
w1 w3 w4

 , γ =

u1 u2 u4
v1 v2 v4
w1 w2 w4

 , δ = −

u1 u2 u3
v1 v2 v3
w1 w2 w3

 . (5)

It then follows that ⟨�(u, v, w), u⟩ = 0 = ⟨�(u, v, w), v⟩ = ⟨�(u, v, w),w⟩,

�(u, v, e1) = −ŭ × v̆ (6)

�(u, v, e2) = ŭ × v̆ (7)

�(u, v, e3) = −ŭ × v̆ (8)

�(u, v, e4) = ŭ × v̆ (9)

where ŭ means dropping the first coordinate in the first case, the second coordinate in the second case, etc. and the cross
product is taken in the three dimensional space with the metric inherited from R4

2.
We can see that

⟨�(u1, u2, u3),�(v1, v2, v3)⟩ =
⟨ui, vj⟩

 , 1 ≤ i, j ≤ 3, ui, vj ∈ R4
2. (10)

We denote the span of a set of vectors {x1, . . . , xn} in R4
2 by [x1, . . . , xn].

As noted above, the split-complex numbers C′ are helpful when studying timelike surfaces.



Download	English	Version:

https://daneshyari.com/en/article/1898574

Download	Persian	Version:

https://daneshyari.com/article/1898574

Daneshyari.com

https://daneshyari.com/en/article/1898574
https://daneshyari.com/article/1898574
https://daneshyari.com/

