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a b s t r a c t

Identifying features of molecular regulatory networks is an important problem in systems biology. It has
been shown that the combinatorial logic of such networks can be captured in many cases by special
functions called nested canalyzing in the context of discrete dynamic network models. It was also shown
that the dynamics of networks constructed from such functions has very special properties that are
consistent with what is known about molecular networks, and that simplify analysis. It is important
to know how restrictive this class of functions is, for instance for the purpose of network reverse-
engineering. This paper contains a formula for the number of such functions and a comparison to the
class of all functions. In particular, it is shown that, as the number of variables becomes large, the ratio of
the number of nested canalyzing functions to the number of all functions converges to zero. This shows
that the class of nested canalyzing functions is indeed very restrictive. The principal tool used for this
investigation is a description of these functions as polynomials and a parametrization of the class of all
such polynomials in terms of relations on their coefficients. This parametrization can also be used for the
purpose of network reverse-engineering using only nested canalyzing functions.

Published by Elsevier B.V.

1. Introduction

A central problem of molecular systems biology is to under-
stand the structure and dynamics of molecular networks, such as
gene regulatory, signaling, or metabolic networks. Some progress
has beenmade in elucidating general design principles of such net-
works. For instance, in [1] itwas shown that certain graph theoretic
motifs appear farmore often in the topology of regulatory network
graphs than would be expected at random. In [2,3] it was shown
that a certain type of Boolean regulatory logic, encoded by the so-
called nested canalyzing Boolean functions, has the kind of dynamic
properties one would expect from molecular networks. In [4] we
showed that the Boolean functions studied there do have a mul-
tistate generalization that shows similar dynamic properties. Fur-
thermore, we showed that the large majority of regulatory rules
that appear in published models of molecular networks, whether
Boolean or multistate, do indeed have this form. Thus, there is evi-
dence that multistate nested canalyzing rules capture key features
of molecular regulation and deserve further study.

These rules, the so-called nested canalyzing rules, are a special
case of canalyzing rules, which are reminiscent of Waddington’s
concept of canalyzation in gene regulation [5]. Nested canalyzing

✩ This research was supported by the National Science Foundation under Grant
Number CMMI-0908201.
∗ Correspondence to: Virginia Bioinformatics Institute, Virginia Tech, Blacksburg,

VA 24061, USA. Tel.: +1 540 231 9264; fax: +1 540 231 2606.
E-mail address: davidmur@vt.edu (D. Murrugarra).

Boolean rules were shown in [6] to be identical with the class
of unate cascade functions, which have been studied extensively
in computer engineering. They represent exactly the class of
Boolean functions that result in binary decision diagrams of
shortest average path length [7]. This in itself has interesting
implications for information processing in molecular networks.
One consequence of this result is that a recursive formula derived
earlier for thenumber of unate cascade functions of a givennumber
of variables [8] applies to give a formula for the number of nested
canalyzing Boolean functions, described in [6]. A formula for the
number of canalyzing Boolean functions had been given in [9].

Many molecular networks cannot be described using the
Boolean framework, sincemore than one threshold for amolecular
species might be required to represent different modes of action.
There are several frameworks available for multistate discrete
models, such as the so-called logical models, Petri nets, and agent-
based models. It has been shown in [10,11] that all these model
types can be translated into the general and mathematically well-
founded framework of polynomial dynamical systems over a finite
number system. In [4] the concept of nested canalyzing logical
rule has been generalized to such polynomial systems. It has
been shown there, furthermore, that a large proportion of rules in
multistate discrete models are indeed nested canalyzing, showing
that this concept captures an important feature of the regulatory
logic of molecular networks.

As was pointed out in [9,6], knowing the number of nested
canalyzing rules for a given number of input variables and for a
given number of possible variable states is important because on
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the one hand it provides an estimate of how plausible it is that
such rules have evolved as regulatory principles and, on the other
hand, provides an estimate of how restrictive the set of rules is.
The latter is important, for instance, for the reverse-engineering
of networks [12]. If the set of rules is sufficiently restrictive,
then the reverse-engineering problem, which is almost always
underdetermined due to limited data, becomes more tractable
when restricted to a smaller model space. Knowing the proportion
of regulatory rules that are nested canalyzing gives an estimate of
how much one can additionally constrain the problem by limiting
the search space of reverse-engineering algorithms to these rules.
That this is indeed the case is an important consequence of the
results in this paper.Wepresent a formula for thenumber of nested
canalyzing functions in a given number of variables and show that
the ratio of nested canalyzing functions and allmultistate functions
converges to zero as the number of variables increases. We follow
the approach in [6] and solve the problemwithin the framework of
polynomial dynamical systems, which makes it possible to frame
it as a problem of counting solutions to a system of polynomial
equations.

2. Nested canalyzing functions

As mentioned in the previous section, it is possible to view
most discrete models within the framework of dynamical systems
over a finite number system, or finite field. For our purposes
we will use the finite fields Fp = {0, 1, . . . , p − 1}, p an arbitrary
prime number, otherwise known as Z/p, the integers modulo p.
Furthermore, we will assume that Fp is totally ordered under
the canonical order, that is, its elements are arranged in linear
increasing order, Fp = {0 < 1 < · · · < p−1}. Let F = Fp for some
prime p.We first recall the general definition of a nested canalyzing
function in variables x1, . . . , xn from [4]. The underlying idea is as
follows: a rule is nested canalyzing, if there exists a variable x such
that, if x receives certain inputs, then it by itself determines the
value of the function. If x does not receive these certain inputs, then
there exists another variable y such that, if y receives certain other
inputs, then it by itself determines the value of the function, and so
on, until all variables are exhausted.

Definition 2.1. Let Si ⊂ F, i = 1, . . . , n, be subsets that satisfy the
property that each Si is a proper, nonempty subinterval of F; that
is, every element of F that lies between two elements of Si in
the chosen order is also in Si. Furthermore, we assume that the
complement of each Si is also a subinterval, that is, each Si can be
described by a threshold si, with all elements of Si either larger or
smaller than si. Let σ be a permutation on {1, . . . , n}.
• The function f : Fn

→ F is a nested canalyzing function in
the variable order xσ(1), . . . , xσ(n) with canalyzing input sets
S1, . . . , Sn ⊂ F and canalyzing output values b1, . . . , bn, bn+1 ∈

F, with bn ≠ bn+1, if it can be represented in the form

f (x1, . . . , xn) =


b1 if xσ(1) ∈ S1,
b2 if xσ(1) ∉ S1, xσ(2) ∈ S2,
...
bn if xσ(1) ∉ S1, . . . , xσ(n) ∈ Sn,
bn+1 if xσ(1) ∉ S1, . . . , xσ(n) ∉ Sn.

• The function f : Fn
→ F is a nested canalyzing function if

it is a nested canalyzing function in some variable order
xσ(1), . . . , xσ(n) for some permutation σ on {1, . . . , n}.

It is straightforward to verify that, if p = 2, that is F = {0, 1},
thenwe recover the definition in [2] of a Boolean nested canalyzing
rule. We emphasize that several important classes of multistate
discrete models can be represented in the form of a dynamical
system f : Fn

−→ Fn, as mentioned above, so that the concept of a
nested canalyzing rule defined in this way has broad applicability.

Example 2.2. Let F be the field with three elements, i.e. F =

{0, 1, 2}. The function f : F2
→ F given by

f (x1, x2) =

1 if x1 ∈ {0, 1},
2 if x1 ∉ {0, 1}, x2 ∈ {2},
0 if x1 ∉ {0, 1}, x2 ∉ {2},

is nested canalyzing in the variable order x1, x2, with canalyzing
input sets S1 = {0, 1}, S2 = {2} ⊂ F, and canalyzing output values
b1 = 1, b2 = 2, b3 = 0 ∈ F.

3. Polynomial form of nested canalyzing functions

We now use the fact that any function f : Fn
→ F can be

expressed as a polynomial in n variables [13, p. 369]. In this section
we determine the polynomial form of nested canalyzing functions.
That is, we will determine relationships among the coefficients
of a polynomial that make it nested canalyzing. We follow the
approach in [6]. Let Bn be the set of functions from Fn to F, i.e.,
Bn = {f : Fn

−→ F}. The set Bn is endowed with an addition and
multiplication that is induced from that of F, whichmakes it a ring.
Let I be the ideal of the ring of polynomials F[x1, . . . , xn] generated
by the polynomials {xpi − xi} for all i = 1, . . . , n, where p is the
number of elements in F. There is an isomorphism between Bn and
the quotient ring F[x1, . . . , xn]/I which is also isomorphic to

R =




(i1,...,in)
it∈F

t=1,...,n

Ci1···inx
i1
1 x

i2
2 · · · xinn

 .
Now we use this identification to study nested canalyzing

functions as elements of R.
Given a subset S ofF, wewill denote byQS the indicator function

of the complement of S, i.e., for x0 ∈ F, let

QS(x0) =


0 if x0 ∈ S,
1 if x0 ∉ S.

We will derive the polynomial form for QS(x) in Lemma A.2.
The following theorem gives the polynomial form of a nested
canalyzing function.

Theorem 3.1. Let f be a function in R. Then the function f is nested
canalyzing in the variable order x1, . . . , xn with canalyzing input
sets S1, . . . , Sn and canalyzing output values b1, . . . , bn, bn+1, with
bn ≠ bn+1, if and only if it has the polynomial form

f (x1, . . . , xn) =

n−1
j=0


Bn−j

n−j
i=1

QSi(xi)


+ b1, (3.1)

where QSi is defined as in Lemma A.2 and Bn−j = (bn−j+1 − bn−j) for
j = 0, . . . , n − 1.
Proof. Let f be a nested canalyzing function as in Definition 2.1,
and let

g(x1, . . . , xn) =

n−1
j=0


Bn−j

n−j
i=1

QSi(xi)


+ b1.

Since g has the right form to be in R, we can use the isomorphism
between Bn and R, to reduce the proof to showing that

g(a1, . . . , an) = f (a1, . . . , an)

for all (a1, . . . , an) ∈ Fn.
If a1 ∈ S1, then QS1(a1) = 0; therefore

g(a1, . . . , an) = b1 whenever a1 ∈ S1.

If a1 ∉ S1 and a2 ∈ S2, then QS1(a1) = 1 and QS2(a2) = 0; therefore

g(a1, . . . , an) = (b2 − b1)+ b1 = b2.
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