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a b s t r a c t

In this paper we introduce a discrete integrable system generalizing the discrete (real)
cross-ratio system in S4 to complex values of a generalized cross-ratio by considering S4 as
a real section of the complex Plücker quadric, realized as the space of two-spheres in S4.We
develop the geometry of the Plücker quadric by examining the novel contact properties of
two-spheres in S4, generalizing classical Lie geometry in S3. Discrete differential geometry
aims to develop discrete equivalents of the geometric notions and methods of classical
differential geometry. We define discrete principal contact element nets for the Plücker
quadric and prove several elementary results. Employing a second real structure, we show
that these results generalize previous results by Bobenko and Suris (2007) [18] on discrete
differential geometry in the Lie quadric.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The study of special surfaces in three-dimensional space has been a topic of interest going back to the foundations of
differential geometry. The subject encompasses surfaces in Euclidean space with familiar properties e.g. constant mean
curvature, constant Gaussian curvature and surfaces in classical affine, Möbius (conformal), and projective geometries and
also surfaces in unfashionable [1] geometries such as Lie geometry [2]. This view was summarized at the beginning of the
20th century in the compendium of Blaschke [3]. Parameterizations of surfaces in space are determined by solutions of
partial differential equations. Then, integrability conditions on these equations for special surfaces determine completely
integrable partial differential equations. This was an essential component of classical results and was rediscovered in the
latter part of 20th century with the redevelopment of ‘‘soliton’’ geometry [4].

It is a characteristic of the smooth theory that surfaces in 3-space can often be found in families related by fundamental
transformations such as the Ribaucour transformation [5]. Under the rubric of ‘‘Discrete Differential Geometry’’, recent
work has discretized classical surface theory by modeling the special differential equations of surface theory with partial
difference equations [6,7]. This has required the development of a discrete theory of ‘‘integrability’’ [8] defined by modeling
the permutability relations (e.g. Bianchi permutability) between transformations of smooth solutions of integrable systems
as a ‘‘consistency’’ condition in the discrete case [6]. Then, one is lead to the viewpoint that the geometry of the fundamental
transformations and the geometry of the discrete surface are the same [9].

Given a parameterization of a surface in space with coordinates (u, v), a system of coordinate curves defined by u =

const. and v = const. determines a ‘‘net’’ on the surface. The classical approach to special surfaces starts with the geometry
of these coordinate curves. In particular, ‘‘conjugate nets’’, are parameterizations of surfaces in space defined by the property
that embedded tangent vectors at each point on a coordinate curve stay in the tangent plane under motions of the curve in
the transverse coordinate direction. This is a concept of projective differential geometry and in an affine chart is equivalent
to the property that the mixed partial derivative of the parameterization is, at each point, spanned by tangent vectors [10].
Conjugate nets parameterize constantmean curvature, constant Gauss curvature and isothermic surfaces, among others [6].
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With this inmind, we consider the discretization of a parameterization on a surface by a ‘‘discrete net’’ of discrete coordinate
curves: a map f : Z2

→ RPn. Discrete surfaces in the classical geometries are then obtained by quadratic constraints on the
image of the discrete net inRPn [11], following Klein’s projectivemodel [12]. Thus, discrete conformal differential geometry,
in the three-dimensional case, considers discrete nets in RP4 constrained to lie in the light-cone of Lorentzian metric R5.
Discrete nets are determined by solutions of systems of partial difference equations. In particular, the difference equations
defining discrete conjugate nets [13] are determined by requiring that the image of each face in Z2 lies in a projective plane.
Discrete conjugate nets form the fundamental example of a discrete integrable systemdefining a discrete surface as solutions
of the difference equation:

∆i∆jf = aji∆if + bij∆jf + cijf ,

where i, j vary over the lattice coordinates of Z2 [6]. Results showing convergence from discrete to smooth solutions of the
Laplace equation indicate that the discrete and smooth surfaces are closely related [14].

Just as Euclidean geometry is a subgeometry of Möbius geometry, Riemannian geometry is generalized by conformal
(Möbius) differential geometry [15]. Möbius geometry is a subgeometry of projective geometry so that, in conformal
differential geometry, parameterizations are coordinate maps from a surface into projective space. Isothermal coordinates,
parameterizations compatible with the conformal structure of a surface, are employed as a natural construction. Curvature-
line coordinates, described typically in terms of the Riemannian principal curvatures end up being conformally invariant.
Thus, in conformal differential geometry it is natural to study isothermic surfaces: surfaces parameterized by curvature line
coordinates compatible with the conformal structure of the surface.

As the notion of a tangent space embedded at each point of the surface in ambient 3-space is not conformally invariant
it is natural to consider the conformally invariant ‘‘mean curvature sphere’’ [16] of a surface. This is a map assigning to
each point of the surface in space a tangent sphere with radius given by the inverse of the mean curvature. Hence, the
mean curvature sphere is properly a map from the surface into the space of two-spheres: a surface made of spheres. Lie
geometry, introduced by Sophus Lie in his doctoral dissertation under Plücker (and in collaboration with Felix Klein [12])
is the geometry of oriented hyperspheres in Möbius geometry. In Klein’s projective model, Lie geometry is the geometry of
the Lie quadric, a signature (2, 4) real projective quadric. The set of null projective lines in the Lie quadric are an elementary
example of contact geometry, with each null line corresponding to the one-parameter family of spheres tangentwith a given
orientation at a fixed point in space. As the elementary invariant sets of Möbius geometry are spheres, there is a natural
relationship between conformal geometry and Lie geometry. Indeed, Möbius geometry is contained as a subgeometry of
Lie geometry with the 3-sphere contained in the Lie quadric as the set of 2-spheres of zero radius. The Möbius group is the
subgroup of symmetries preserving these point-spheres, ‘‘point transformations’’ in the general group of symmetries of the
Lie quadric [17]. A surface in space naturally induces a map into the space of contact lines in the Lie quadric determined
by the set of tangent spheres at each point of the surface. Each contact line contains a point corresponding to a sphere of
0-radius, a point in S3. Thus, amap into the space of contact lineswhich satisfies the Legendre condition determines a surface
in S3 [2].

In the survey article of Bobenko and Suris [18] the theory of discrete differential geometry is extended to contact
lines in Lie geometry. Discrete ‘‘principal contact element nets’’ model the family of contact lines associated to a surface
parameterized in curvature line coordinates. The discrete analog of curvature line coordinates for surfaces in space are
‘‘circular nets’’, maps Z2

→ S3 where the points of each elementary quadrilateral of the lattice lie on a circle. Then, each
contact line contains a representative corresponding to a point in S3 so that the set of such point-spheres determines a
circular net in S3 [6]. In the light-conemodel of S3, a circle is given by the intersection of a projective 2-plane with S3 ⊂ RP4.
Thus, circular nets in S3 are conjugate nets in RP4 subject to the constraint determined by the quadratic form of the light-
cone [11].

Circular nets in S2 may be considered as a discretization of the Gauss map for a discrete surface [14,19]. Identifying S2
with CP1, the cross-ratio of four circular points [q1, q2, q3, q4] ∈ R. Thus, circular nets in S2 are solutions of the ‘‘cross ratio
system’’, a set of partial difference equations given by determining the cross-ratio for each face of the map on Z2. Given
three points {q1, q2, q3} ∈ CP1, a complex number λ determines a unique fourth point q4 so that the four points have cross-
ratio given by λ. This cross-ratio system extends naturally to complex values and general discrete nets in S2. Thus in S2, the
complex cross-ratio defines a master system of which circular nets are special solutions.

Let c be a discrete curve given as amap c : Z → C ⊂ CP1, then a choice of an initial point c+(0) defines the first iteration
of the discrete evolution of c by the formula:

[c(1), c(0), c+(0), c+(1)] = λ.

Given λ ∈ C as a parameter, c+(1) = M0(λ)c+(0), where M0(λ) is a Möbius transformation of S2. If λ ∈ R, then the points
{c(1), c(0), c+(0), c+(1)} are concircular. Iterating this procedure, specifying λ : Z2

→ R determines a circular net in S2.
Thus, a discrete net may be viewed as the discrete evolution of a discrete coordinate curve. If c is a closed curve, that is
c : Z → H is periodic, then iteratingMk(λ) around c one is led to the holonomy problem

Mn(λ) . . .M1(λ)M0(λ)c+(0) = c+(0) (1.1)

given by the closing condition around c . Thus, the eigenlines of the holonomy problem determine initial conditions for the
evolution of a closed curve c.
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