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We study the properties of the Arnold cat map on a torus with several periodic sections using the
Ulam method. This approach generates a Markov chain with the Ulam matrix approximant. We study
numerically the spectrum and eigenstates of this matrix showing their relation with the Fokker-Planck
relaxation and the Kolmogorov-Sinai entropy. We show that, in the frame of the Ulam method, the time
reversal property of the map is preserved only on a short Ulam time which grows only logarithmically
with the matrix size. Parallels with the evolution in a regime of quantum chaos are also discussed.
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1. Introduction

The Arnold cat map [1] is the cornerstone model of the classical
dynamical chaos [2-4]. This symplectic map belongs to the class of
Anosov systems, has the positive Kolmogorov-Sinai entropy h ~
0.96 and is fully chaotic [4]. The map has the form

p=p+x (modl), x=x+p (mod1). (1)

Here the first equation can be seen as a kick which changes
the momentum p of a particle on a torus while the second one
corresponds to a free phase rotation in the interval —0.5 < x <
0.5; bars mark the new values of canonical variables (x, p). The
map dynamics takes place on a torus of integer length L in the p
direction with —L/2 < p < L/2. The usual case of the Arnold
cat map corresponds to L = 1 but it is also possible to study
the chaotic properties of the map on a torus of longer integer
size L > 1 as it has been discussed e.g. in [5]. For L > 1, the
spreading in p is characterized by a diffusive process described by
the Fokker-Planck equation:

dw(p, t)/9t = D/28%*w(p, t)/9%p, (2)

where the diffusion coefficient D ~ (x¥*) = 1/12w(p,t) is
a probability distribution over momentum and t is the integer
time measured in number of iterations. As a result, for times
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t > 12/D, the distribution converges to the ergodic equilibrium
with a homogeneous density in the plane (x, p). The exponential
convergence to the equilibrium state is determined by the second
eigenvalue A, of evolution (2) on one map iteration with |A| =
exp(—Ip) < 1and the convergence rate

Ip = 272D/1* ~ 1.6449/1%; (3)

the first eigenvalueis A; = 1.

The dynamical equations (1) are reversible in time, e.g. in
the middle of free rotation, but, due to chaos and exponential
instability of motion, small round-off errors break time reversal
leading to an irreversible relaxation to the ergodic equilibrium [5].

In this work, we investigate the transition from dynamical be-
havior to statistical description using the Ulam method proposed
in 1960 [6]. According to this method, the whole phase space is cov-
ered by equidistant lattice (N = N, x Ny in our case). Then the tran-
sition probabilities from cell to cell are determined by propagating
a large number of trajectories N from one initial cell j to all other
cells i after one iteration of the map (we used here N, = 10°). In
this way, we generate the Markov chain [7] with a transition ma-
trix S = Njj/Ngy, where Nj is the number of trajectories arrived

from cell j to cell i. By construction, we have Zf’: 1S = 1and thus
the matrix S belongs to the class of Perron-Frobenius operators
[1,2,8]. It is proven that for hyperbolic maps in one and higher di-
mensions the Ulam method gives a convergence to the spectrum of
continuous system in the limit of small cell size [9-11]. At the same
time it is known that in certain cases the Ulam method gives sig-
nificant modifications of the spectrum compared to the case of the
continuous Perron-Frobenius operators [10]. Indeed, for Hamilto-
nian maps with divided phase space, the spectrum is completely
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modified (see discussions in [12,13]) due to penetration of trajec-
tories inside stability islands. From a physical view point the dis-
cretization corresponds to an effective noise in canonical variables
which amplitude is equal to the cell size. Since an arbitrary small
noise gives propagation of trajectories inside stability islands [4]
the spectrum of the Ulam matrix approximant of size N in such a
case differs from its continuous limit. A generalization of the Ulam
method, based on one ergodic trajectory, allows to obtain a con-
vergent spectrum for dynamics on a chaotic component [13].

The majority of numerical studies with the Ulam method
has been done for one-dimensional maps (see e.g. [14-16]) but
recently the studies were extended to the two-dimensional maps
(see e.g. [12,13,17,18]). For example, a geometrical description of
coherent flow structures and their invariant manifolds has been
developed in [17], the fractal Weyl law for dissipative maps was
discussed in [18]. In a certain respect the interest to such studies
was generated by similarities between properties of the Ulam
matrix approximant for dynamical maps, which can be viewed as
the Ulam networks, and the Google matrix of the World Wide Web
as it is discussed in [12,16]. For 2D dissipative maps it was found
that the spectrum is characterized by the fractal Weyl law [12,18].

In a difference from the previous studies of the Ulam method
in 2D maps here we choose the Arnold cat map on a torus of size
L since it is fully chaotic, it has well defined diffusive relaxation
to the ergodic state at large L, and it is time reversible. Thus
the aim of this work is to understand the interplay of all these
features in the frame of the Ulam method and the finite size
Markov chain with the Ulam matrix approximant S generated by
this method. The previous studies of toral automorphisms by the
Ulam method performed in [13,17] were done for the regimes
where the diffusion time scale was comparable with the time scale
given by the inverse Lyapunov exponent. In the case considered
here we have the diffusion time being significantly larger than the
Lyapunov time scale, thus our studies are done in the regime which
satisfies the Bogolubov criterion on time scales separation required
for a statistical description.

The paper is composed as follows: in Section 2 we describe the
properties of spectrum and eigenstates of the matrix S, the features
of time reversal are analyzed in Section 3 and discussion of the
results is presented in Section 4.

2. Spectrum and eigenstates of the Ulam matrix approximant

The complex eigenvalues A; and right eigenvectors i; of the
Ulam matrix approximant S satisfy the equation Sv; = A
and are determined numerically by direct diagonalization. In
agreement with the Perron-Frobenius theorem [8] the maximal
eigenvalue is A; = 1 with the corresponding eigenstate being real,
nonnegative and homogeneously distributed over the whole phase
space.

The global distributions of eigenvalues A; in the complex plane
are shown in Fig. 1 for even and odd number of cells. Usually
we keep N, = LNy to have exactly the same amount of cells in
each of L sections of the continuous map. The results show that
2D distributions are different for even and prime values of Ny (see
Fig. 1). For the even case A-values are homogeneous inside a circle
of a certain radius. For the odd case the distribution has a form of
a ring without eigenvalues at |A| = 0 (or with a smaller density
at zero). The arithmetic properties of the number of cells N, and
N, = LN, play a visible role. Thus for Ny = 47 we have a formation
of star with 16 star rays while for Ny = 43 there are 44 rays
which are much less visible (for Ny, = 37 we obtain a similar
type of distribution with 38 rays). We obtain a similar type of ring
spectrum also for Ny = 51 (bottom right panel in Fig. 1). In the
case when both N, and N, are primes, e.g. Ny = 47, N, = 191,
(and hence we have only approximate relation N, ~ LNy) the
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Fig. 1. Complex spectrum A of the Ulam matrix approximant S for the Arnold cat
map. Top three rows: right column has Ny = 47 and L = 3,4, 8 (from top to bottom);
left column has Ny = 43 and L = 3, 4, 8 (from top to bottom). Bottom row is for
L = 4 with Ny = 50 (left) and Ny = 51 (right). The total matrix size is N = N,Nyx
with N, = LN, and all eigenvalues are shown for each panel. Unit circle is shown in
red. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

visibility of rays also decreases (data not shown). It is clear that the
arithmetic properties of the discretized lattice play an important
role at small lattice sizes. However, we argue that they will be not
so important in the limit of large lattice size.

Indeed, we expect that in the limit of large Ny and N, = LN,
with fixed L the distribution will converge to a limiting one
in agreement with the spirit of mathematical theorems about
the convergence of Ulam matrix approximant for fully chaotic
maps [9-11]. A confirmation of this is seen in Fig. 2 where
the density distributions of eigenvalues dW /dy are shown as a
function of the relaxation rate y = —2In|A|. Indeed, the density
is essentially size independent showing two distinct distributions
for even and odd values of N,. We suppose that this difference
between two cases can be related to the effect of discretization
on the continuous map symmetry x — —x. The third type of size
independent distribution appears in the case of prime values of N,
and N, ~ LN, (see Fig. 2) but in this case the difference should
be attributed to the fact that this discretization does not preserve
exactly L identical classical segments of the continuous map.

The maximum of the distribution dW /dy is located approx-
imately at y = 2 ~ 2h corresponding to the value of the
Kolmogorov-Sinai entropy h. Thus these y values describe the pro-
cess of exponential divergence of nearby trajectories and are re-
lated to the exponential correlations decay generated by chaotic
dynamics. In addition to these values y ~ 1 there is also the value
of A, = exp(—y,/2) which is positive and is very close to the
unit value A; = 1. It corresponds to the second eigenvalue of the
Fokker-Planck equation describing diffusive relaxation to the er-
godic steady-state. Indeed, the dependence of thegap A = 1 — X,
shown in Fig. 3, is well in agreement with the dependence (3): a
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