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a b s t r a c t

We study the nonlinear-damping continuation of singular solutions of the critical and supercritical NLS.
Our simulations suggest that for generic initial conditions that lead to collapse in the undamped NLS, the
solution of the weakly-damped NLS

iψt(t, x)+∆ψ + |ψ |
p−1ψ + iδ|ψ |

q−1ψ = 0, 0 < δ ≪ 1,

is highly asymmetric with respect to the singularity time, and the post-collapse defocusing velocity of the
singular core goes to infinity as the damping coefficient δ goes to zero. In the special case of the minimal-
power blowup solutions of the critical NLS, the continuation is a minimal-power solution with a higher
(but finite) defocusing velocity, whose magnitude increases monotonically with the nonlinear damping
exponent q.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear Schrödinger equation (NLS)

iψt(t, x)+1ψ + |ψ |
p−1ψ = 0, ψ0(0, x) = ψ0(x) ∈ H1, (1)

where x = (x1, . . . , xd) ∈ Rd and ∆ = ∂x1x1 + · · · ∂xdxd , is one
of the canonical nonlinear equations in physics, arising in various
fields such as nonlinear optics, plasma physics, Bose–Einstein
condensates (BECs), and surface waves. When (p − 1)d < 4, the
NLS is called subcritical. In that case, all H1 solutions exist globally.
In contrast, both the critical NLS (p−1)d = 4 and the supercritical
NLS (p−1)d > 4 admit singular solutions. Since physical quantities
do not become singular, this implies that some of the terms that
were neglected in the derivation of the NLS, become important
near the singularity.

The continuation of NLS solutions beyond the singularity has
been an open question formany years. In 1992,Merle [1] presented
a continuation of the explicit blowup solutions ψexplicit,α of the
critical NLS, see (9), which is based on slightly reducing the power
(L2 norm) of the initial condition. This continuation has two key
properties:

1. Property 1: The solution is symmetric with respect to the
singularity time Tc .

∗ Corresponding author.
E-mail addresses: fibich@tau.ac.il, fibich@math.tau.ac.il (G. Fibich),

morankli@tau.ac.il (M. Klein).

2. Property 2: After the singularity, the solution can only be
determined up to multiplication by a constant phase term eiθ .

More recently, Merle et al. [2] have generalized this continuation
result to Bourgain–Wang singular solutions [3]. Note, however,
that both the explicit solutions ψexplicit,α and the Bourgain–Wang
solutions are unstable.

In [4], Merle presented a different continuation, which is
based on the addition of nonlinear saturation. Merle showed that,
generically, as the nonlinear saturation coefficient goes to zero,
the limiting solution beyond Tc can be decomposed into two
components: a δ-function singular core that extends for Tc ≤ t ≤

T 0, and a regular component elsewhere.
In [5], Tao proved the global existence and uniqueness in the

semi Strichartz class for solutions of the critical NLS. Intuitively,
these solutions are formed by solving the equation in the Strichartz
class whenever possible, and deleting any power that escapes to
spatial or frequency infinitywhen the solution leaves the Strichartz
class. These solutions, however, do not depend continuously on
the initial conditions, and are thus not a well-posed class of
solutions. Recently, Stinis [6] studied numerically the continuation
of singular NLS solutions using the t-model approach.

In [7] we analyzed asymptotically and numerically four poten-
tial continuations of singular NLS solutions: (1) a sub-threshold
power continuation, (2) a shrinking-hole continuation for ring-
type solutions, (3) a vanishing nonlinear-damping continuation,
and (4) a complex Ginzburg–Landau (CGL) continuation. Our main
findings were as follows:
1. The non-uniqueness of the phase of the singular core beyond

the singularity (Property 2) is a universal feature of NLS
continuations.
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2. The symmetry with respect to the singularity time (Property 1)
holds if the continuation model is time reversible and if it leads
to a point singularity (i.e., if it defocuses for t > Tc). Therefore,
it is a non-generic feature.

Recently, the post-collapse loss-of-phase phenomenonwasdemon-
strated experimentally for intense laser beams propagating in wa-
ter [8].

In this paper we further study the effect of small nonlinear-
damping in the NLS

iψt(t, x)+1ψ + |ψ |
p−1ψ + iδ|ψ |

q−1ψ = 0, 0 < δ ≪ 1. (2)
The addition of small nonlinear-damping is physical. Indeed, in
nonlinear optics, experiments suggest that arrest of collapse is
related to plasma formation, and nonlinear damping is used as
phenomenological model for multi-photon absorption by plasma.
In BEC, a quintic nonlinear damping term corresponds to losses
from condensate due to three-body inelastic recombinations [9].
In addition, the nonlinear-damping term appears in the complex-
Ginzburg–Landau (CGL) equation,which arises in amodel of chem-
ical turbulence, Poiseuille flow, Rayleigh–Bérnard convection,
Taylor–Couette flow, and superconductivity.

In [7] we analyzed the continuation of the critical NLS with a
vanishing critical nonlinear damping, i.e., Eq. (2) with p = q =

1 + 4/d. Since the NLS (2) is not time reversible, its solutions are
asymmetric with respect to the time T (δ)arrest at which the collapse
is arrested. In particular, in the limit δn → 0+, the continuation
of ψexplicit,α(t, r) is eiθψ∗

explicit,κα(2Tc − t, r), where κ ≈ 1.614.
Hence, the defocusing velocity κα is higher then the focusing
velocity α. When the initial condition leads to a log–log collapse
in the undamped critical NLS, asymptotic analysis and numerical
simulations suggest that the singular core expands beyond the
singularity at a velocity that goes to infinity as δ → 0+.

The question that we address in this study is whether and how
the results of [7] for q = p = 1 + 4/d will change in the following
cases:
1. The critical NLS with a supercritical damping exponent (i.e.,

q > p = 1 + 4/d).
2. The supercritical NLS with q ≥ p > 1 + 4/d.

The paper is organized as follows. In Section 2 we provide
a short review of NLS theory. In Section 3 we review previous
rigorous, asymptotic, and numerical results on the effect of
damping in the NLS. In Section 4 we show numerically that in
the supercritical NLS, the nonlinear damping exponent q has to be
strictly higher than the nonlinearity exponent p, in order to arrest
the collapse. This is different from the critical case, where collapse
is arrested for q ≥ p. In Section 5 we show that solutions of the
supercritical NLS with a small nonlinear damping are asymmetric
with respect to the arrest-of-collapse time T (δ)arrest, and that the post-
collapse defocusing velocity of the singular core goes to infinity
as the damping coefficient δ goes to zero. In Section 6 we obtain
similar results for the critical NLS with generic initial conditions
that lead to a log–log collapse. In the special case of the minimal-
power explicit blowup solution ψexplicit,α(t, r) of the critical NLS,
however, the continuation beyond the singularity is also defined
for q < p, and is given by eiθψ∗

explicit,κ(q)α(2Tc − t, r), where κ(q)
increases monotonically with q. Final remarks are given in
Section 7.

Overall, the qualitative effect of small nonlinear damping on
the collapse is the same in the critical and the supercritical NLS.
One difference is that in the critical case collapse is arrested for
q ≥ p, whereas in the supercritical case collapse is only arrested for
q > p. Another difference is that the distance between the damped
solution around T (δ)arrest and the asymptotic profile of the undamped
NLS is small in the critical case, but large in the supercritical case.
Surprisingly, in the latter case, the profile near T (δ)arrest appears to be
given by a rescaled supercritical standing wave.

2. Review of NLS theory

The NLS (1) has two important conservation laws: Power
conservation1

P(t) ≡ P(0), P(t) =


|ψ |

2dx,

and Hamiltonian conservation

H(t) ≡ H(0), H(t) =


|∇ψ |

2dx −
2

p + 1


|ψ |

p+1dx. (3)

The NLS (1) admits thewaveguide solutionsψ = eitR(r), where
r = |x|, and R is the solution of

R′′(r)+
d − 1

r
R′

− R + Rp
= 0, R′(0) = 0, R(∞) = 0. (4)

When d = 1, the solution of (4) is unique, and is given by

Rp(x) =


p + 1
2

1/(p−1)

cosh−2/(p−1)

p − 1
2

x

. (5)

When d ≥ 2, Eq. (4) admits an infinite number of solutions. The
solution with the minimal power, which we denote by R(0), is
unique, and is called the ground state.

2.1. Critical NLS

In the critical case (p − 1)d = 4, Eq. (1) can be rewritten as

iψt(t, x)+1ψ + |ψ |
4/dψ = 0, ψ0(0, x) = ψ0(x) ∈ H1, (6)

and Eq. (4) can be rewritten as

R′′(r)+
d − 1

r
R′

− R + R4/d+1
= 0,

R′(0) = 0, R(∞) = 0.
(7)

Theorem 1 (Weinstein [10]). A sufficient condition for global
existence in the critical NLS (6) is ∥ψ0∥

2
2 < Pcr, where Pcr = ∥R(0)∥2

2,
and R(0) is the ground state of Eq. (7).

The critical NLS (6) admits the explicit solution

ψexplicit(t, r) =
1

Ld/2(t)
R(0)


r

L(t)


eiτ+i LtL

r2
4 , (8a)

where

L(t) = Tc − t, τ (t) =

 t

0

1
L2(s)

ds =
1

Tc − t
. (8b)

More generally, applying the dilation transformation with λ = α
and the temporal translation Tc −→ α2Tc shows that the critical
NLS (6) admits the explicit solutions

ψexplicit,α(t, r) =
1

Ld/2α (t)
R(0)


r

Lα(t)


eiτα+i (Lα)tLα

r2
4 , (9a)

where

Lα(t) = α(Tc − t), τα(t) =

 t

0

1
L2α(s)

ds =
1
α2

1
Tc − t

,

α > 0.
(9b)

The explicit solutions (8)–(9) become singular at t = Tc . These
solutions are unstable, however, as the have exactly the critical
power for collapse. Therefore, any infinitesimal perturbation
which decreases their power, will arrest the collapse.

1 We call the L2 norm the power, since in optics it corresponds to the beam’s
power.
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