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a b s t r a c t

In this work, the existence of a saddle–node bifurcation of invariant cones in three-dimensional
continuous homogeneous piecewise linear systems is considered. First, we prove that invariant cones for
this class of systems correspond one-to-one to periodic orbits of a continuous piecewise cubic system
defined on the unit sphere. Second, let us give the conditions for which the sphere is foliated by a
continuum of periodic orbits. The principal idea is looking for the periodic orbits of the continuum that
persist when this situation is perturbed. To do this, we establish the relationship between the invariant
cones of the three-dimensional system and the periodic orbits of two planar hybrid piecewise linear
systems. Next, we define two functions whose zeros provide the invariant cones that persist under the
perturbation. These functions will be called Melnikov functions and their properties allow us to state
some results about the existence of invariant cones and other results about the existence of saddle–node
bifurcations of invariant cones, which is the principal goal of this paper.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and preliminary results

Nowadays, piecewise linear systems are being extensively
studied because they are able to model several mechanical and
electronic elements and even some biological behaviors [1–6].
Moreover, piecewise linear systems seem to be able to reproduce
the dynamical behavior of a nonlinear general system [7,8,5]. On
the other hand, piecewise linear systems can be used as a tool
to understand some basic bifurcations that have their starting
point in the change of stability of one equilibrium point [9–13].
In some of the previous works, it is shown that the change of
the stability of one equilibrium point forces the appearance of a
limit cycle. Indeed, to analyze this phenomenon it is necessary
to study, in some situation, the behavior of the equilibria on the
separation boundaries. The topological type of these equilibria is
essential to ensure (or not) the existence of limit cycles. When
the system is planar continuous and piecewise linear with two
zones of linearity, this behavior is well known [10,11]. However,
the problem is compounded for continuous three-dimensional
systems. For instance, in [14] the authors prove that the continuous
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matching of two stable linear systems can be unstable. The
instability of the origin, the unique equilibriumpoint of the system,
can occur when the system has an invariant cone; by contrast,
the absence of invariant cones ensure the stability of the origin
when the matrices of the system are Hurwitzian [15,14]. This is a
generalization of Theorem 3.4 of [16]. Therefore, it is important to
study the existence of the invariant cones for this class of systems.
We realize that these invariant manifolds can be considered as the
centermanifold, in non-generic cases, for non-smooth systems and
so, the invariant cones have to play an important role. As a remark
related, the stability of the origin can be guaranteed, as it is well
known, by means of Lyapunov functions. However, it is not easy to
find Lyapunov functions for piecewise linear systems, even when
the involved matrices are Hurwitzian [17,18].

In [15], the authors provide a rigorous analysis about the
existence of invariant cones for continuous homogeneous three-
dimensional piecewise linear systems with two linearity zones
separated by a plane. In thatwork, the invariant cones are classified
as two-zonal ones when they live in both zones of linearity and
one-zonal ones in the other case. As it is established in [15],
the one-zonal invariant cones are not isolated and the maximum
number of two-zonal invariant cones is two. Furthermore, the
authors conjecture the existence of a saddle–node bifurcation of
two-zonal invariant cones for an adequate choice of the parameters
of the system. The principal aim of this work is to prove this
conjecture, giving the local expressions of the hyper-surface (in the
parameter space), where the saddle–node bifurcation occurs.

To start, we work with a normal form for piecewise linear
systems. Concretely, we want a piecewise linear system which
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cannot be decoupled and thus it cannot be reduced to a lower
dimension problem. These systems are called proper from pioneer
works of Chua and collaborators (see, for example, [6]). As
it is proven in [2], any proper three-dimensional continuous
homogeneous piecewise linear system with two linearity zones
separated by a plane can be written into the Lienard form

ẋ = F(x) =


M+x if x > 0,
M−x if x < 0, (1)

where x = (x, y, z)T ,

M+
=

 t+ −1 0
m+ 0 −1
d+ 0 0

 , M−
=

 t− −1 0
m− 0 −1
d− 0 0

 ,
being t±,m± and d± the coefficients of the characteristic
polynomials of matricesM±.

To analyze the dynamical behavior of piecewise linear systems,
it is usual to introduce an adequate Poincaré map defined in the
separation planeΠ ≡ {x = 0} by using some Poincaré half-maps.
A detailed study of Poincaré half-maps can be found in [19–21].
Now, a Poincaré map for system (1) will be defined.

For every point p = (xp, yp, zp)T ∈ R3 we denote by
xp(t) = (xp(t), yp(t), zp(t))T the solution of system (1) with initial
condition xp(0) = p. The corresponding orbit is denoted by γp.

If xp = 0 and eT1M
+p = yp > 0, where e1 = (1, 0, 0)T , then the

orbit γp crosses transversally the plane Π with xp(−t) < 0 and
xp(t) > 0 for t > 0 small enough. If xp(t) vanishes in (0,+∞),
then we define the right flying half-time τ+

p as the positive value
such that xp(τ+

p ) = 0 and xp(t) > 0 in

0, τ+

p

. In such a case,

we define the right Poincaré half-map P + at the point (yp, zp) as
P +(yp, zp) =


yp(τ+

p ), zp(τ
+
p )
T
. Note that the right Poincaré half-

map P + depends only on the linear system ẋ = M+x.
Analogously, we can define the left flying half-time τ−

p and the
left Poincaré half-map P − when xp = 0 and eT1M

−p = yp < 0.
Therefore, one can introduce the Poincaré map as P = P +

◦ P −

whose domain is contained in D = {p ∈ Π : eT1M
−p < 0,

eT1M
+P −(p) > 0}.

Taking into consideration that the vector field F of system (1) is
homogeneous, i.e. F(µx) = µF(x) for all x ∈ R3 and µ > 0, it is
easy to see that the maps P +,P − and P are also homogeneous
and hence, these maps transform half-straight lines contained
in the plane x = 0 and passing through the origin into half-
straight lines contained in the plane x = 0 that also pass through
the origin (see Fig. 1). Thus, if the Poincaré map P possesses an
invariant half-straight line we say that the system (1) has a two-
zonal invariant cone. In Fig. 2 it is shown a two-zonal invariant
cone and a continuum of one-zonal invariant cones. In the last
case, the system has an invariant cone intersecting tangentially the
separation plane.

Furthermore, it is possible to define a map S− that transforms
the slopes of the initial half-straight lines into the slopes of the
final half-straight lines by means of P −. Similarly, we can also
define a map S+ by considering the slopes of initial and final half-
straight lines by applying the right Poincaré half-map P +. Hence,
system (1) has an invariant two-zonal cone if and only if the map
S = S+

◦ S− has a fixed point or equivalently, the generalized
eigenvalue problemP (v) = δvhas solution for δ > 0with (0, v) ∈

D . An analysis of maps S+ and S− can be found in [15], where
the authors provide a parametric representation of these maps as
functions of the flying half-times. In [22], the author studies the
eigenvalue problem to give some bifurcations of periodic orbits
which live in the invariant cones; in particular, one generalization
of the Hopf bifurcation is analyzed.

Fig. 1. Poincaré half-maps P + and P − and Poincaré map P of system (1).

On the other hand, if the flow of system (1) is projected onto
the unit sphere S2, then the invariant cones of the system can
be considered as periodic orbits of a suitable system defined on
the unit sphere. To see this, by following the original work of
Hadeler [23], it is just necessary to do the change of variables
u = x∥x∥−1, r = ∥x∥, for x ≠ 0, where ∥ · ∥ is the Euclidean
norm in R3. Then, we obtain the system
u̇ = F(u)− ⟨F(u),u⟩u, u ∈ S2,
ṙ = ⟨F(u),u⟩ r, r > 0

being ⟨·, ·⟩ the ordinary scalar product in R3. Now, it is immediate
to observe that the invariant cones of system (1) correspond one-
to-one to the periodic orbits of the following continuous piecewise
cubic system on S2

u̇ = F(u)− ⟨F(u),u⟩u, u ∈ S2. (2)

Here, it is also possible to define the periodic orbits as one-zonal
and two-zonal ones. By using, for example, system (2), one can
prove that the one-zonal invariant cones of (1) cannot be isolated
and in this case matrix M+ (or M−) has complex eigenvalues with
the real part of the complex eigenvalues and the real eigenvalue
shared. Moreover, when system (1) possesses one invariant cone
living in each zone of linearity, then the sphere is foliated by a
continuum of periodic orbits when the traces of matrices M+ and
M− coincide. Here, two invariant cones tangent to the separation
plane appear. These statements are stated in the next results and
are deduced from Proposition 6 and statement (b) of Theorem 2
in [15].

Proposition 1. Assume that the eigenvalues of the matrices of
system (1), M+ and M−, are λ−, α−

± iβ− and λ+, α+
± iβ+,

respectively, with λ−, α−, β−, λ+, α+, β+
∈ R, β− > 0 and

β+ > 0. Then, the following statements hold.

(a) If system (1) has an one-zonal invariant cone C living in the half-
space {x 6 0}, then α−

= λ− and the system has a continuum of
one-zonal invariant cones living in the zone {x 6 0}.

(b) If system (1) has an one-zonal invariant cone C living in the half-
space {x > 0}, then α+

= λ+ and the system has a continuum of
one-zonal invariant cones living in the zone {x > 0}.
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