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The dynamics of point vortices is generalized in two ways: first by making the strengths complex,
which allows for sources and sinks in superposition with the usual vortices, second by making them
functions of position. These generalizations lead to a rich dynamical system, which is nonlinear and yet
has conservation laws coming from a Hamiltonian-like formalism. We then discover that in this system
the motion of a pair mimics the behavior of rays in geometric optics. We describe several exact solutions
with optical analogues, notably Snell’s law and the law of reflection off a mirror, and perform numerical
experiments illustrating some striking behavior.
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Introduction

The dynamics of point vortices with fixed strengths in a 2-
dimensional ideal fluid has a classical pedigree, e.g. [1], Art.
154-160. The subject continues to be actively pursued: a modern
survey [2] on its equilibrium aspect alone lists more than 100
papers.

We generalize vortex dynamics in two ways, firstly allowing,
besides vortices, sources/sinks as well as their superpositions
(‘poles’), and secondly allowing the strengths of these poles to vary
as functions of position in the plane.

The first generalization goes back to a 1928 paper by Friedman
and Polubarinova-Kochina (the former is the same Friedman as in
the eponymous cosmological model). The rather more recent paper
by Borisov and Mamaev [3] contains references as well as a good
theoretical analysis. There is also a very readable account of the
history, derivations and generalizations of point vortex models in
the paper by Llewellyn Smith in this issue [4]. Lacomba [5] has also
recently studied interactions between vortices and sources/sinks.
Here we present a couple of new exact solutions and alternative
derivations of some old ones.

The second generalization seems less explored, and leads to
rich dynamics, which we illustrate with a variety of exact solutions
with analogues in geometric optics, the position-dependent strength
of a pole replacing the medium-dependent index of refraction. As
typical examples we detail the analogues of Snell’s law and the law
of reflection off a mirror, in generalized forms. Optical analogy is
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not so obvious: though it was suggested by Kimura [6] that in the
dipole limit a classical vortex pair should travel along a geodesic,
the principle governing light rays in geometric optics is one of
least time, not of least length. Nevertheless, the dynamics of poles
with position-dependent strengths turns out to be quite versatile
in mimicking the ray representation of phenomena of wave
propagation. Take for instance the work by Berry [7] on focusing
and defocusing of surface waves by underwater landscape. It will
become clear that such effects are realizable by our dynamics,
too. There are also similarities with results of Longuet-Higgins on
trapping waves around islands [8].

In an interesting paper, Hinds et al. [9] consider the dynamics of
a pair of vortex patches as they cross a step change in the depth of
the fluid, and also find that the pair is refracted provided they are
sufficiently well separated compared to their size and the angle of
incidence, otherwise they find vortex shedding. While we do not
claim that our introduction of a ‘seabed’ function genuinely models
avariation in depth, we do consider only point vortices (and poles)
so vortex shedding would not arise.

In the language of dynamical systems, this second generaliza-
tion through the introduction of a ‘seabed’ function S in Section 4
puts us in the realm of hybrid systems, where different equations of
motion govern different regions of the phase space.

It may not be amiss to point out that the dynamical system
(2), which is the chief object of our study, is quite nonlinear—in
a sense more so than say the Euler or Navier-Stokes equations. In
the latter, indeed, the nonlinearity is separated out as an additive
term (v - V)v = V(3v?) — v x (V x v), so that we can
resort to linearization by dropping this nonlinear term or by
substituting for it a term (background flow - V)v (Stokes and
Oseen approximations, respectively). In contrast, our system is so
nonlinear that it is not even clear whether or not there exists a
‘linearization’ of the system that makes sense.
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In the light of this inseparable nonlinearity, it is noteworthy that
our system proves to be analysable in elementary terms, and many
instances of complete integrability explicitly spelled out. This is
thanks, ultimately, to the fact that the classical vortex dynamics is
Hamiltonian and our generalization is something like Hamiltonian.

1. Equation of motion

We begin with a discussion of 2-dimensional ideal fluid flow in
terms of complex potential, but shall specialize soon. Consider N
interacting points z, . . ., zy € C called poles, each pole z; carrying
with it a family of complex-valued functions {ML (2) }n ,, called
strengths, only finitely many of which are nonzero. The poles move
according to
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fori = 1,...,N ( denotes complex conjugation). The dynamics

of (1), being 1st-order in time t, has no inertia, in the sense that
the poles’ instantaneous positions determine their velocities: the
phase space is a product of N copies of C (minus diagonals if we
wish a priori to exclude collisions), not a (co)tangent bundle. We
can set up a dynamical system like this on any domain of any
Riemann surface. In simple domains that arise in practice, solutions
can be found by the method of images.

A term of the form . (z — z;)" on the right side of (1) represents
a flow velocity induced by z; at z. The pictures forn = -1
have rotational symmetry: source or sink of flux 2z u for u real,
vortex of circulation 27 +/—1p for u pure imaginary, in general
a superposition of these, i.e. a spiral node. Other n exhibit other
symmetries: multipolar flows for n < —1, uniform flow forn = 0,
and corner flows forn > 0.

2. Homogeneous systems, conservation laws

Now suppose (1) is homogeneous so that u; = 0 except for a

certain exponent n = ng, and moreover all ! = /LLO are fixed.
Then (1) may be recast in the ‘canonical’ form
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(G as in ‘Green’). From

dH(z(t) ) =) LT T
de VAN az  dt ez dt”

i

whenng = —1

2

=) Re(u) ‘dz-(r)
- de™
we see

Theorem 2.1. If all y' are pure imaginary and fixed, then H is
conserved.

Next let the homogeneity degree ng be odd, with w! still fixed.
Pairwise cancelation in (1) yields ) ; uidz;/dt = 0, whence

Theorem 2.2. [fthe degree of homogeneity is odd and u :== ), i £
0, then the ‘center of strength’
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is conserved. If i = 0, then for every partition of the index set I LIl" =

{1,...,N}suchthat ;==Y ' # 0and py =Yy ' #0,
the difference between the ‘subcenters’
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is conserved.

The ‘partition’ part of this Theorem is elementary but does not
appear to have been used prior to the paper by Montaldi et al. [10].

If instead the homogeneity degree ng is even and there are just
2 poles z, z/ with strengths p, i/, then iz — 'z’ is a conserved
quantity. However, this does not appear to extend to more than 2
poles.

Finally, how can we extend the affine symmetry of the phase
space to that of the phase space-time so as to preserve the
invariance of (1)? The requirement that time t be real gives the
answer.

Theorem 2.3. The system (1)is invariant under the action of C*x C if
and only if it is homogeneous of degree ng = —1: here (a, b) € C*xC
acts by sending (t, z) to (|a|*t, az + b).

3. Exact solutions

We shall, in the remainder of the paper, focus on the theory
where (1) involves only the exponent ny = —1. In this section
we suppose all the strengths are fixed: ' (z) = w'. Thus the
equations of motion become

d w
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We consider position-dependent strengths in Sections 4 and 5.
When all u' are pure imaginary, we are back to classical point
vortices and recover the logarithmic H as their Hamiltonian.

3.1. Self-similar solutions

If a collection of poles happens to move in a self-similar manner,
then Theorem 2.3 reduces the (complex) degree of freedom from
N to 1, down to a single equation
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or in polar coordinates
a1 _, ,d
——|Z|* =ReM, |Z|*— argZ = Im M.
dt 2 dt
The solution is
ImM
Z(t) =Texp («/—1 log T)Z(O), (4)
Re M
where
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