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a b s t r a c t

We study the kinematic relative velocity of general test particles with respect to stationary
observers (using spherical coordinates) in Schwarzschild spacetime, obtaining that its
modulus does not depend on the observer, unlike Fermi, spectroscopic, and astrometric
relative velocities. We study some fundamental particular cases, generalizing some results
given in other work about stationary and radial free-falling test particles. Moreover, we
give a new result about test particles with circular geodesic orbits: the modulus of their
kinematic relative velocity with respect to any stationary observer depends only on the
radius of the circular orbit, and so it remains constant.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The concept of ‘‘relative velocity’’ of a test particle with respect to an observer in general relativity is only well defined
when the observer and the test particle are in the same event. Nevertheless, the notion of relative velocity of a distant test
particle is fundamental in physics and so it was revised by the IAU using reference systems adapted to the solar system
(see [1,2]). Thereby, some authors have introduced new geometric concepts motivated by the coordinate-dependence of
some definitions; for example, scaled Fermi–Walker derivatives let us define geometrically local notions of velocities of a
test particle with respect to a congruence of observers (see [3]). Moreover, four different intrinsic geometric definitions
of relative velocity of a distant test particle with respect to a single observer were introduced in [4]. These definitions are
strongly associated with the concept of simultaneity: kinematic and Fermi in the framework of ‘‘spacelike simultaneity’’,
spectroscopic and astrometric in the framework of ‘‘lightlike simultaneity’’. These four concepts each have full physical sense,
and have proved to be useful in the study of properties of particular spacetimes (see [4–7]).

Following this line, we are going to study the kinematic relative velocity of test particles with respect to stationary ob-
servers in Schwarzschild spacetime. This velocity shows a kind of ‘‘Newtonian behavior’’ in this spacetime unlike the other
three velocities, and some interesting properties about stationary observers hold, as we are going to develop in the present
work.

This paper is organized as follows. In Section 2, we establish notation and define the concept of kinematic relative
velocity. In Section 3 we introduce the Schwarzschild metric in spherical coordinates and their corresponding stationary
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Fig. 1. Scheme of the elements involved in the definition of the kinematic relative velocity of β ′ (test particle) with respect to β (observer). The curve ψ
is a spacelike geodesic orthogonal to the 4-velocity of β at p, denoted by u. The vector u′ is the 4-velocity of β ′ at q.

observers, giving some lemmas that are applied in Section 4 to obtain the main result: the expression of the modulus of the
kinematic relative velocity of a general test particle with respect to any stationary observer. We also study in this section
some fundamental examples that were previously introduced in [4], generalizing the results obtained in that paper, and we
present a new example about circular geodesic orbits. Finally, in Section 5 we give a property that extends the main result
to general relativity.

2. Definitions and notation

We work in a Lorentzian spacetime manifold (M, g), with c = 1 and using the ‘‘mostly plus’’ signature convention
(−,+,+,+). We suppose that M is a convex normal neighborhood; thus, given two events p and q in M, there exists a
unique geodesic joining them (results on the existence of convex normal neighborhoods in semi-Riemannian manifolds
are given in [8, pp. 129–131]; see Remark 2.1 for a discussion about working in a non-convex normal neighborhood). The
parallel transport from q to p along this geodesic is denoted by τqp. If β : I → M is a curve with I ⊆ R a real interval, we
identify β with the image βI (that is a subset inM), in order to simplify the notation. Vector fields are denoted by uppercase
letters and vectors (defined at a single point) are denoted by lowercase letters. Moreover, if x is a spacelike vector, then
∥x∥ := g (x, x)1/2 is the modulus of x. If X is a vector field, Xp denotes the unique vector of X in TpM.

In general, we say that a timelikeworld lineβ is an observer (or a test particle). Nevertheless, we say that a future-pointing
timelike unit vector u in TpM is an observer at p, identifying the observer with its 4-velocity.

The Landau submanifold Lp,u (also called Fermi surface) is given by all the geodesics starting from p and orthogonal to u
(see [9,10,6]).

2.1. Kinematic relative velocity

Throughout the paper, we consider an observer β and a test particle β ′ (parameterized by their proper times) with
4-velocities U and U ′ respectively. Let u := Up be the 4-velocity of β at an event p and let q be the event of β ′ such that
there exists a spacelike geodesic ψ orthogonal to u joining p and q (see Fig. 1). Note that since we work in a convex normal
neighborhood, this event is unique and it is given by q := Lp,u ∩ β ′. We denote u′

:= U ′
q in order to simplify the notation.

The kinematic relative velocity of u′ with respect to u is the vector

vkin :=
1

−g

τqpu′, u

τqpu′
− u. (1)

In the case p = q, this definition coincides with the usual concept of relative velocity

v =
1

−g (u′, u)
u′

− u, (2)

which is only defined when u and u′ are in the same tangent space.
Note that vkin is spacelike and orthogonal to u, and the square of its modulus is given by

∥vkin∥
2

= g (vkin, vkin) = 1 −
1

g

τqpu′, u

2 = 1 −
1

g

u′, τpqu

2 , (3)

since parallel transport conserves themetric. Varying p along β , we construct the vector field Vkin defined on β , representing
the kinematic relative velocity of β ′ with respect to β (see [4,11]). Throughout the paper we are going to denote vkin := Vkin p
as we have already done in this section.
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