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a b s t r a c t

Suppose that (M, E) is a compact contact manifold, and that a compact Lie group G acts on
M transverse to the contact distribution E. In an earlier paper, we defined a G-transversally
elliptic Dirac operator ̸Db, constructed using a Hermitianmetric h and connection∇ on the
symplectic vector bundle E → M , whose equivariant index iswell-defined as a generalized
function on G, and gave a formula for its index. By analogy with the geometric quantization
of symplectic manifolds, the virtual G-representation Q (M) = [ker ̸Db] − [ker ̸D∗

b] can
be interpreted as the ‘‘quantization’’ of the contact manifold (M, E); the character of this
representation is then given by the equivariant index of ̸Db. By defining contact analogues
of the algebra of observables, prequantum line bundle and polarization, we further extend
the analogy by giving a contact version of the Kostant–Souriau approach to quantization,
and discussing the extent to which this approach is reproduced by the index-theoretic
method.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The problem of geometric quantization is well known in symplectic geometry, and dates back to the work of Souriau [1]
and Kostant [2]. Symplectic geometry is the natural setting for classical Hamiltonian dynamics, but contact structures appear
in classical physics as well: the role of contact geometry in Lagrangian mechanics is explained in [3], and the geometry of
classical thermodynamics has a natural contact structure (see for example [4] or [5]). Quantization in contact geometry
has also been studied, but usually, the methods employed are related to Berezin–Toeplitz quantization [6–8] rather than
traditional geometric quantization. A brief sketch of an approach to geometric contact quantization was given by Vaisman
in [9]; the first quantizationwepresent for contactmanifolds expands upon this sketch.We should also note that a geometric
quantization for Jacobi manifolds has been given in [10] which specializes to contact manifolds. However, this approach
is based on Vaisman’s method of contravariant derivatives in Poisson geometry [11], while we make use of covariant
derivatives, as is the norm in symplectic geometry.

In this article, we will describe two ways to define a ‘‘geometric quantization’’ of contact manifolds analogous to familiar
methods in symplectic geometry. We first describe contact versions of the algebra of observables and Hamiltonian group
actions, and give a construction of a Hilbert space of sections of a ‘‘quantum bundle’’ in the tradition of Kirillov–Kostant
quantization. Tools from CR geometry play a significant role in this construction; in particular, this approach applies to
Sasakian manifolds.
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The second approach is analogous to the use of Spinc (almost complex) quantization in symplectic geometry as a
model for geometric quantization in the Kähler case [12,13]: using a ‘‘compatible’’ almost CR structure, we construct an
odd first order differential operator ̸Db that reduces, in the case of a strongly pseudoconvex CR manifold, to the operator
̸Db =

√
2(∂b + ∂

∗

b), where ∂b is the tangential Cauchy–Riemann operator determined by the CR structure. The operator ̸Db
is not elliptic, but if a Lie group G acts onM transverse to the contact distribution, then ̸Db will be transversally elliptic, and
we can give a formula for its index similar to the Riemann–Roch formula in the symplectic case.

Our results can be summarized as follows: Let (M, E) be a compact cooriented contact manifold. A choice of contact form
is given by a non-vanishing section θ of the annihilator line bundle E0

⊂ T ∗M . (By assumption, E0 is oriented, and hence,
trivial.) The subbundle E = ker θ ⊂ TM is a contact distribution if and only if µθ = θ ∧ dθn/n! defines a volume form onM .
If a compact Lie group G acts onM preserving E, the contact form θ can be assumed to be G-invariant by averaging, allowing
us to define the contact momentum map Φθ : M → g∗ given by

⟨Φθ , X⟩ = θ(XM)

for all X ∈ g, where XM is the vector field generated by the infinitesimal action of X onM . The contact form also determines
a Jacobi structure onM as follows: any vector field onM is determined uniquely by its pairings with θ and dθ ; in particular,
the Reeb vector field ξ is defined by θ(ξ) = 1 and ι(ξ)dθ = 0. This allows us to define a map Λ#

: T ∗M → E ⊂ TM by
declaring that, for any η ∈ T ∗M , we have

θ(Λ#η) = 0 and ι(Λ#η)dθ = η(ξ)θ − η.

Each f ∈ C∞(M) is then associated to the Hamiltonian vector field Xf = Λ#df + f ξ , and the Jacobi bracket on C∞(M) is
given by {f , g} = Xf ·g−gξ ·f . For any f ∈ C∞(M), the associated Hamiltonian vector field satisfies L(Xf )θ = (ξ ·f )θ , so that
Xf is a contact vector field (see [14]). We then see that any group action onM preserving the contact form θ is Hamiltonian,
in the following sense:

Theorem 1.1. Suppose a compact Lie group G acts on a compact contact manifold M preserving the contact form θ . With respect
to the Jacobi structure determined by θ , we have:

1. The map g → C∞(M) given by X → ΦX
θ is a Lie algebra homomorphism.

2. The Hamiltonian vector field associated to the function ΦX
θ is equal to XM .

Thus, the diagram of Lie algebra homomorphisms

g //

""FFFFFFFFF C∞(M)

��
Xham(M)

(1)

commutes, where Xham(M) denotes the space of contact Hamiltonian vector fields onM . From [14], we know that the space
of contact Hamiltonian vector fields is precisely the set of infinitesimal symmetries of the contact structure, as noted above:
L(Xf )θ = (ξ · f )θ for any f ∈ C∞(M). We note that whenever ξ · f = 0, Xf preserves the contact form, and hence the
volume form µθ . These infinitesimal symmetries of the contact form are known as quantomorphisms in the case that M is a
prequantum circle bundle [15]; in this case the contact form θ is a connection 1-form, and the functions f ∈ C∞(M) such
that ξ · f = 0 can be identified with the pullback of functions on the base manifoldM/S1. In particular, since θ is preserved
by the G-action, the momentum map components ΦX

θ = ⟨Φθ , X⟩ ∈ C∞(M) satisfy ξ · ΦX
θ = 0 for all X ∈ g.

Proposition 1.2. The space C∞

b (M) = {f ∈ C∞(M)|ξ · f = 0} is a Lie subalgebra of (C∞(M), {·, ·}), and the Jacobi bracket on
C∞(M) restricts to a Poisson bracket on C∞

b (M).

It is clear that the elements of C∞

b (M) generate infinitesimal quantomorphisms (we will allow an abuse of language, and
continue to apply this term to contact manifolds that are not prequantum circle bundles). Once an invariant contact form
is chosen, we see that the momentum map components span a Lie subalgebra of C∞

b (M) ⊂ C∞(M), and that the map (1)
factors through C∞

b (M).
To define a quantization of the contact manifold (M, θ), we used an adapted version of the quantum bundles from [16].

Since θ is a contact form, the 2-form Ω = −dθ restricts to a symplectic structure on the subbundle E = ker θ . A Hermitian
line bundle with connection π : (L, h, ∇) → (M, E, Ω) will be called a quantum bundle if the curvature form of ∇ is equal
to iΩ . (In [16], it is only required that curv(∇) = iΩ along the subbundle E ⊂ TM .) We can then construct the Hilbert space
H = ΓL2(M, L) given by the L2 completion of the space of smooth sections of L with respect to the inner product

⟨s1, s2⟩ =

∫
M
h(s1, s2)µθ .

It is then straightforward to check that the assignment

f → ∇Xf + iπ∗f
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