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critical exponents characterizing the transition. Negative correlations imply an onset of synchronization
for smaller coupling, whereas positive correlations shift the critical coupling towards larger interaction
strengths. For negatively correlated oscillators the transition still exhibits critical behaviour similar

to that of the all-to-all coupled Kuramoto system, while positive correlations change the universality
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class of the transition depending on the correlation strength. Crucially, the paper demonstrates that
the synchronization behaviour is not only determined by the coupling architecture, but also strongly
influenced by the oscillator placement on the coupling network.
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1. Introduction

The collective dynamics of synchronization has constituted a
field of very active interest over the last couple of years. Typical
areas where synchronization phenomena play an important role
are manifold, ranging from fields as diverse as ecology, social
dynamics, biological rhythms to fields like laser physics [1-3]
and also power systems [4]. These real-world systems consist of
many elementary units that interact. Since the discovery that the
coupling networks are often non-trivial [5,6], the research into
synchronization phenomena on complex networks has attracted
significant attention [6,7].

So far most of the work in this field has dealt with understand-
ing the influence of the topology of the interaction network on syn-
chronization properties [6,7]. Studies of this problem have mainly
concentrated on three approaches: (i) the master stability func-
tion approach [8] for achieving an understanding of the stability
of the fully synchronized state for systems of identical chaotic os-
cillators; (ii) several analytical methods for studying the onset of
synchronization [9,10]; and (iii) a numerical exploration of the
properties of the synchronization transition of network ensem-
bles [11-18]. These studies have provided much insight, demon-
strating, e.g., that for symmetrical coupling small homogeneous
uncliquish load-balanced networks facilitate the transition to com-
plete synchronization [19]. In asymmetrically coupled systems,
which have mainly been investigated through weighting schemes
on undirected networks [20-23], homogeneous in-signals and
balanced loads constitute two key indicators of an enhanced
synchronizability.
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In the second and third streams of this research the critical
coupling that characterizes the onset of synchronization and its
relation to structural properties of the coupling network have been
explored, mainly using the Kuramoto model [2]
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as a well-understood model for use in the study of phase
synchronization (see, e.g., [24] for arecent summary). In Eq. (1) the
¢;,i = 1,..., N, describe the phases of N oscillators, the w; their
native frequencies, o the coupling strength and the matrix a; the
topology of the coupling, i.e. the interaction network. Following,
e.g., [9,15,25,26] we set a; = 1 if i and j are connected and
a;j = 0 otherwise. For a very good discussion of this choice of
normalization see [17].

For all-to-all coupling a;; = 1/(N — 1) Vi # j the model (1)
exhibits a second-order phase transition from a desynchronized to
a (partially) synchronized phase at some critical coupling strength
o. = 2/mg(0) [2], where g(-) is the distribution of the oscillator’s
native frequencies. Interestingly, the synchronization transition
appears to be very similar to the mean-field type version of
the model for some classes of complex networks such as the
Strogatz-Watts small world model [11], random graphs, and even
some kinds of scale-free networks [15]. However, for some kinds
of degree distributions of scale-free networks the characteristics of
the synchronization transition are found to depend on the degree
heterogeneity [10].

Recently, as another approach, optimization techniques were
used to investigate the relationship between correlations in
oscillator placements, network architecture and synchronization
[27-30]. The results from these studies suggest that a correlated
oscillator placement can strongly affect a system’s synchronization

0167-2789/$ - see front matter Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.physd.2010.05.010


http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:Markus.Brede@Csiro.au
http://dx.doi.org/10.1016/j.physd.2010.05.010

1760 M. Brede / Physica D 239 (2010) 1759-1765

properties. More specifically, a grouping of oscillators on the
network in such a way that the native frequencies of linked
oscillators are anti-correlated has been shown to induce a
transition to complete synchronization for low coupling, whereas
a positively correlated oscillator arrangement requires more
coupling strength for macroscopic synchronization to occur.
These findings have recently been corroborated by a study of
synchronization in bipolar population networks of Kuramoto
oscillators [26].

The results in [27,30,26] suggest that the characteristics of
the transition to synchronization may be different for positively
or negatively correlated oscillator arrangements. However, this
issue and the scaling with the system size have not been studied
systematically so far and are the main subjects of the present study.

In our view, these results appear particularly relevant for
evolved ecological or biological systems, where the synchroniza-
tion of the individual elements might have been a determinant of
the fitness of the system and thus have guided its evolution. In
such a case, the evolution of the system will probably have been
strongly affected by heterogeneity in the characteristics (i.e. native
frequencies in the Kuramoto model) of the individual elements.
Thus, the observed architecture of the system is not only character-
ized by the topology of the interaction network, but also strongly
determined by the oscillator placement on the network. Similarly,
as gains in the average degree of synchronization are at least as
strongly marked by rearrangements in the oscillator placement as
by the evolution of the network topology itself, as [27] highlights,
introducing specific oscillator correlations may be easier to imple-
ment than a change in the overall network arrangement in tech-
nical applications where synchronization between the individual
elements is desirable.

Correlations between the native frequencies of adjacent
oscillators can be measured using a standard Pearson correlation
coefficient
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where (w) = 1/N ), w; is the average native frequency. It should
be noted that strongly correlated oscillator placements are only
possible on sparsely connected interaction networks. Generally,
the more connected a network, the less correlated the oscillator
placements that are possible, i.e. for a fully coupled system one
trivially has ¢, = 0. To the best of our knowledge, apart from
in [27-29], correlations between network topology and oscillator
placement and their influence on synchronization have not found
any attention in the considerable literature on synchronization of
complex networks; cf., e.g., [6,7] for a recent survey.

In this paper, we follow up on the above findings of our
previous work and carry out a detailed analysis of the properties
of the synchronization transition on random networks with
tunable correlated oscillator placements. As will be shown below,
correlations in the oscillator placement can affect both the critical
point that separates the desynchronized from the synchronized
phase, and the universality class of the synchronization transition.
Results that elaborate on the dependence of the properties of the
transition on the characteristics of the oscillator arrangement on
the network are detailed below.

2. Analysis of the synchronization transition

To investigate the synchronization transition we follow a
straightforward approach and construct random (undirected)
Erdés-Rényi type graphs [31]. For technical reasons, to eliminate
an irrelevant source of heterogeneity that otherwise would have

to be averaged over, we choose the ‘microcanonical’ random graph
model, where exactly L = pN distinct randomly chosen pairs of
nodes are connected by links [32]. Starting from an initially random
oscillator placement we then carry out a simple optimization
procedure to generate a correlated oscillator arrangement with
a given correlation coefficient ¢. This is achieved by randomly
selecting pairs of nodes and considering swapping the associated
native frequencies. Swaps are accepted if they lead to a correlation
coefficient ¢, closer to the desired value ¢, i.e. we minimize the
difference |c,, — c;|. The procedure is terminated if the correlation
coefficient reaches the desired level of correlation within a small
error tolerance, ie. [c, — ¢)| < €, where we set e = 1074
for the rest of the study. Once the correlated oscillator ensemble
is generated, we then integrate Eq. (1) numerically with initial
conditions ¢;(t = 0) randomly selected from (—m, ] and
determine the standard order parameter

r(t)el’ = Zei¢1(‘). (3)
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The amplitude order parameter r(t) is then averaged over time
(after allowing for a sufficient time interval for relaxation) and then
over several hundred different (correlated) oscillator frequencies
w; and network configurations a;, where the native frequencies
w; are selected uniformly at random from [—1, 1] [33]. More
precisely, we measure

Trel+T
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where (-) indicates the average over different initial conditions
and the oscillator and network ensemble. As, e.g.,in [11-13,16,18]
a finite size scaling analysis is then carried out to determine the
characteristics of the synchronization transition.

In the following analysis we focus on networks with average
degree (k) = 3.5, i.e. very sparsely connected networks which
nevertheless already have a giant component that comprises
more than 95% of all nodes. Clearly, oscillators cannot be placed
on loops of odd length in a perfectly anti-correlated manner.
Thus, large densities of short loops of odd length don’t allow for
strongly anti-correlated oscillator placements on the network. In
this context, the sparse connectivity ensures an asymptotically
vanishing number of triangles and in general low densities of short
loops. It is worthwhile to point out that in order to highlight the
effect of oscillator correlations on the synchronization transition
in a regime in which the effect is strongest, all experiments have
been carried out on very sparsely connected networks. In the light
of this, comparisons to previous numerical and analytical work via
mean-field approaches [ 12-14] are difficult.

Using the above optimization method, correlated oscillator
placements with c, in the range between —0.6 and 0.6 can be
generated. Even though the rest of the study is focused on only
one value of the network connectivity (k) = 3.5, we have also
experimented with different link densities in this sparse regime.
The results presented below are found to be prototypical and the
qualitative statement appears to be generally valid for sparsely
connected networks.

The precise determination of the transition between the
desynchronized and the synchronized phase requires a careful
consideration of finite size effects. Here we follow the approach
of [11,16,18] with the finite size scaling ansatz

r(o,N) = N"*F((c — oc)N'"), (5)

where the exponent « = S/v is related to the exponent g that
describes the scaling of the order parameter r close to the critical
point in the thermodynamic limit, i.e.

r~ (o — o). (6)
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