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In the study of chaotic behaviour of systems of many hard spheres, Lyapunov exponents of small absolute
values exhibit interesting characteristics leading to speculations about connections to non-equilibrium
statistical mechanics. Analytical approaches to these exponents so far can be divided into two groups,
macroscopically oriented approaches, using kinetic theory or hydrodynamics, and more microscopically
oriented random-matrix approaches in quasi-one-dimensional systems. In this paper, | present an ap-
proach using random matrices and weak-disorder expansion in an arbitrary number of dimensions.
Correlations between subsequent collisions of a particle are taken into account. It is shown that the results
are identical to those of a previous approach based on an extended Enskog equation. I conclude that each
approach has its merits, and provides different insights into the approximations made, which include the
StofRzahlansatz, the continuum limit, and the long wavelength approximation. The comparison also gives
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insight into possible connections between Lyapunov exponents and fluctuations.
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1. Introduction

In recent years, investigations into the connections between
the theory of dynamical systems and non-equilibrium statistical
mechanics have yielded many interesting and important results.
Gallavotti and Cohen [1,2], for instance, conjectured that many-
particle systems as studied by statistical mechanics will generally
be strongly chaotic. This has prompted a great deal of interest in the
connections between chaos on the one hand and the decay to equi-
librium and transport coefficients on the other (see for instance
Ref. [3]). A central role in the study of chaos and related proper-
ties is played by the Lyapunov exponents, which describe the expo-
nential divergence or convergence of nearby trajectories in phase
space.

Some of this interest has been directed towards the Lyapunov
exponents of the propotype system of many hard spheres. Several
analytical calculations of, among other things, the largest Lyapunov
exponent and the sum of all positive Lyapunov exponents have
been performed [4-9]. Lyapunov exponents of many-particle sys-
tems have also been evaluated numerically in molecular-dynamics
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simulations (see, for instance Ref. [10-12]). Because of their unex-
pected behaviour, in particular the Lyapunov exponents of small
but nonzero absolute value have received attention. A step struc-
ture occurs in the Lyapunov spectrum near zero whenever the sys-
tem is large enough compared to the mean free path, as was first
noted by Posch and Hirschl [13] and later also found in other sys-
tems (see, for example, Refs. [11,14]). These Lyapunov exponents
differ from the exponents of larger absolute value, in the sense
that all particles contribute to them, much like in the case of the
zero Lyapunov exponents, and the corresponding modes appear to
be, on average and to first approximation, linear combinations of
these zero modes with a sinusoidal modulation in the position. Ini-
tially, it was hoped that describing the Lyapunov modes through a
macroscopically oriented approach such as hydrodynamics or an
Enskog equation might provide insight into possible connections
between chaos and transport. In Ref. [7], it has been shown that
the small exponents can in fact be viewed to belong to Goldstone
modes and that the behaviour found in simulations [ 13] can be un-
derstood from this. A set of equations was derived for these expo-
nents by the use of an extended Enskog equation and values for
the exponents were obtained. Other attempts to understand these
exponents have been based on hydrodynamic equations [15], and,
although limited to quasi-one-dimensional systems, random ma-
trices along with approximations of weak disorder [16-18].

In view of the two distinct approaches to the Goldstone modes,
through random matrices on the one hand and through the Enskog
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equation on the other, it is of interest to investigate whether the re-
sults of Ref. [7] can also be derived using techniques from random-
matrix theory. In this paper, instead of starting from the Enskog
equation, I make use of random matrices and the weak-disorder
expansion. Unlike the previous random-matrix approaches men-
tioned above, the present derivation is not limited to quasi-one-
dimensional systems. The approximations needed to arrive at
quantitative results can be studied more carefully in some cases,
and are similar to those used in the derivation of Ref. [7]. By com-
paring the Enskog and random-matrix approaches, one gains in-
sight into the approximations made in both approaches and the
associated inaccuracies. Of special interest are the consequences of
the thermodynamic limit, since finite-size effects in the Lyapunov
exponents may be related to fluctuations and decay of correlations.

This paper is organised as follows. In Section 2, Lyapunov ex-
ponents are briefly introduced as well as the dynamics in tangent
space of freely moving hard spheres in tangent space. Next, in Sec-
tion 3, a summary is given of the Goldstone modes and the cal-
culation of Ref. [7] by the use of an extended Enskog equation. In
Sections 4-6, it is explained how the results found from the ex-
tended Enskog equation can also be derived through the use of
random matrices. The approaches are compared in Section 7, and
the approximations needed are discussed. Possible corrections are
considered and it is pointed out how these may lead to insight in
the connections between non-equilibrium behaviour and chaotic
properties.

2. Lyapunov exponents and the dynamics in tangent space

Consider a d-dimensional system of N particles moving in a
2dN-dimensional phase space I'. At time t = 0, the system is
assumed to be in an initial point y, in this phase space, from which
it evolves with time according to y(y,, t). If the initial conditions
are perturbed infinitesimally by 8y, the system evolves along
an infinitesimally different path y (yo, t) + 8y (o, t), where §y
denotes a coordinate in the tangent space 47", and 8y (yp,0) =
8y,- The evolution of a vector in the tangent space is described by

3y (Yo, £) = My, (1) - 8y, (M
where M, (t) is a 2dN-dimensional matrix defined by

dy(}’O7 t)
dyo
The Lyapunov exponents are the possible average asymptotic

growth rates of infinitesimal perturbations §y;(y, t) associated
with the eigenvalues pu;(t) of My, (t), i.e.,

Myo(t) = (2)

1
A= lim T (nfpi()] + iarg ui(t)) . (3)

If the system is ergodic, it will eventually come arbitrarily close
to any point in phase space for all initial conditions except for a
set of measure zero. The Lyapunov exponents are thus the same
for almost all initial conditions. In the literature, one also finds the
Lyapunov exponents defined with reference to the eigenvalues of

My, ()T - Myo(t)]%, in which case they are real.

The symmetries of the dynamics of the system generate vectors
in tangent space which do not grow or shrink exponentially and
therefore have Lyapunov exponents equal to zero. For a system of
hard spheres under periodic boundary conditions, these symme-
tries and their corresponding zero modes are uniform translations,
Galilei transformations, time translations, and velocity scaling.

We now consider a gas of identical hard spheres of diameter
a and mass m in d dimensions in the absence of external fields.
As there are no internal degrees of freedom, the phase space may
be represented by the positions r; and velocities v; of all particles,
enumerated by i, and similarly the tangent space by infinitesimal
deviations §r; and §v;. The evolution of the system in phase space

a(6+86)

Fig. 1. Geometry of a collision of two particles i and j of diameter q, in relative
positionr; = r; —r; and with the relative velocity v;j = v; —v;. The collision normal
6 is the unit vector pointing from the centre of particle j to the centre of particle
i. The circle drawn represents the locus of closest approach. Coordinates before
the collision are marked with a prime. The dashed lines indicate an infinitesimally
displaced path.

consists of a sequence of free flights interrupted by collisions.
During the free flights, the particles do not interact and their
positions change linearly with the velocities; similarly, ér changes
linearly with §v. For rigid spheres the collisions are instantaneous.
At the moment of the collision, momentum is exchanged between
the two particles involved along the collision normal 6 = (r;—r))/a
at impact, as shown in Fig. 1. At the instant of the collision, none of
the other particles are assumed to interact.

From Eq.(2) and the phase space dynamics, the dynamics in tan-
gent space can be derived [4,19]. During the free flight between the
instant of a collision t, (z being the number of the collision in the se-
quence) and t, there is no interaction between the particles and the
components of the tangent-space vector transform according to

(), =0 (),
Z(t—t,) = (g - tz)') , (5)

in which I is the d x d identity matrix.

As shown in Fig. 1, infinitesimal differences in the positions and
velocities of the particles lead to infinitesimal changes in the colli-
sion normal and collision time. This, in turn, leads to infinitesimal
changes in both positions and velocities right after the collision.
Throughout the paper, primes denote coordinates in phase space
and tangent phase space just before a collision while non-primed
quantities refer to coordinates just after the collision. For colliding
particles i and j, one finds

51',‘ 81‘:
iy | (Sr]/.
svi | = LFD |5y
8Vj 8V],

I-s s 0 0 or;

S 1-S5 0 0 sr,

— . J

|- a 1-s s sv; | (6)
Q —-Q S I—S (Svj/-

where { and | are the 4d x 4d and d x d identity matrices, respec-
tively, and £ is the 4d x 4d collision matrix, which can be written
in terms of d x d matrices S and Q specifying the collision dynamics
in tangent space (see, for instance, Refs. [4,7]).

Let Z(t) be the 2dN x 2dN matrix which performs the single-
particle transformations Z(t) for all particles during free flight
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