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ABSTRACT

Wave trains, or periodic travelling waves, can evolve behind invasion fronts in oscillatory reac-
tion-diffusion models for predator-prey systems. Although there is a one-parameter family of possible
wave train solutions, in a particular predator invasion a single member of this family is selected. Sherratt
(1998) [13] has predicted this wave train selection, using a A-w system that is a valid approximation near
a supercritical Hopf bifurcation in the corresponding kinetics and when the predator and prey diffusion
coefficients are nearly equal. Away from a Hopf bifurcation, or if the diffusion coefficients differ some-
what, these predictions lose accuracy. We develop a more general wave train selection prediction for a
two-component reaction-diffusion predator-prey system that depends on linearizations at the unstable
homogeneous steady states involved in the invasion front. This prediction retains accuracy farther away
from a Hopf bifurcation, and can also be applied when the predator and prey diffusion coefficients are
unequal. We illustrate the selection prediction with its application to three models of predator invasions.
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1. Introduction

The cause of temporal cycles in natural populations has been
a focus of study by ecologists for many decades. A classical
hypothesis is that this oscillatory behaviour arises from the
interaction between a predator population and its prey, and
many models have been constructed and studied to support this
hypothesis (see, for example [1]). Such models have often taken
the form of kinetics systems: ordinary differential equation models
that describe the time evolution of predator and prey densities that
are assumed to be spatially constant. More recently, however, field
studies have shown that in some natural populations oscillations
are not synchronized in space, and when viewed in one spatial
dimension take the form of a wave train [2-7]. Wave trains, or
periodic travelling waves, are spatio-temporal patterns that are
periodic in both time and space and have the appearance of a
spatially periodic solution that maintains its shape and moves at a
constant speed. Consequently, there has been a great deal of study
recently on oscillatory reaction-diffusion systems because these
partial differential equation models possess wave train solutions
(see [8] and references therein).
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One way that wave trains can arise in oscillatory reac-
tion-diffusion systems is following a predator invasion [9-11]. The
initial condition for such a scenario consists of the prey at carrying
capacity everywhere in the spatial domain, except in a localized re-
gion in which a predator is introduced. Typically, a travelling front
evolves that maintains its shape and moves at a constant speed. In
some cases, behind this primary invasion front a secondary transi-
tion occurs, and the solution takes the form of a wave train. Two nu-
merical simulations where wave trains evolve following a predator
invasion are illustrated in Fig. 1. We can see from these examples
that the wave train behind the front does not necessarily move at
the same speed, or even in the same direction, as the invasion front
itself.

For oscillatory reaction-diffusion systems near a Hopf bifurca-
tion in the corresponding kinetics, there exists a one-parameter
family of wave train solutions and a range of corresponding
speeds [12]. In a particular numerical simulation of an invasion,
we typically observe only a single member of this family, and this
seems robust to changes in initial or boundary conditions. There-
fore, it appears that a particular wave train is somehow selected
out of the family. We would like to find some means of predicting
the selected wave train.

Sherratt has in fact already produced an explanation of
the selection mechanism and a prediction for the wave train
selected behind invasion fronts in reaction-diffusion systems
with oscillatory kinetics [13]. The basis of his prediction is an
approximating lambda-omega (A-w) system. The behaviour of
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Fig. 1. Wave trains behind invasion fronts. The horizontal axis is the spatial
coordinate x. Shown are equally spaced plots of the density of the predator p(x, t)
at ten equal time intervals with increasing time from bottom to top.

an oscillatory reaction-diffusion system near a nondegenerate
supercritical Hopf bifurcation can be described by the simpler A-w
system whose coefficients are obtained from the normal form of
the Hopf bifurcation in the kinetics system. Predictions derived
in this way are applicable near the Hopf bifurcation and when
the predator and prey have nearly equal diffusion coefficients. For
more widely applicable predictions, such as in cases where there
are larger amplitude oscillations or unequal diffusion coefficients,
it would be beneficial to develop a criterion to predict the selected
wave train that does not directly depend on the A-w system.

In the remainder of this paper, we derive and test such a crite-
rion. We first introduce in Section 2 the class of two-component
reaction-diffusion systems we consider. These systems describe
the evolution of population density distributions of two species,
one a prey and the other a predator, in one space dimension.
Two spatially homogeneous steady states are relevant: an unsta-
ble prey-only state that is invaded by a travelling front, and a co-
existence state unstable to oscillatory modes that interacts with
the invasion. In some cases, such as illustrated in Fig. 1(a), there
is a secondary front that invades the coexistence state. The speed
of a front invading an unstable steady state can be predicted by
the linear spreading speed (see the review [14] and references
therein) which depends only on linearization about the unstable
state. In Section 3, we consider coherent structures in the complex
Ginzburg-Landau (CGL) equation [14-18], of which the A-w sys-
tem is a special case. The unstable state in this case is the origin,
which corresponds to the coexistence state in predator-prey sys-
tems, and coherent structures represent travelling fronts that con-
nect the steady state to wave trains. The linear spreading speed
selects a particular coherent structure and wave train, and this re-
trieves the prediction developed in [13]. Coherent structures have
been generalized as defects in general reaction-diffusion systems
by Sandstede and Scheel in [19]. In Section 4, we extend the pre-
diction for the A-w system to a new “pacemaker” criterion for de-
fects in predator-prey reaction-diffusion systems that connect the
unstable prey-only state with wave trains associated with oscilla-
tory instabilities of the coexistence state. For the speed of the se-
lected defect we take the minimum of the linear spreading speeds
for the prey-only and coexistence states, and for the frequency of
the selected wave train measured in the frame comoving with the
defect we take the frequency of the linear Hopf instability of the
coexistence state. The performance of the pacemaker criterion is
then numerically tested in Section 5 on sample oscillatory reac-
tion-diffusion systems. We find that the pacemaker criterion gives
accurate predictions for a wider range of parameter values than the
A-w criterion does, but still falls off in accuracy farther away from
the Hopf bifurcation. Finally, Section 6 discusses and summarizes
the key results.

2. Mathematical background

We consider predator-prey reaction-diffusion systems in one
space dimension, of the form
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where h(x, t) is the density of prey at position x and time t
and p(x, t) is the density of predator at (x,t). Both h and p
are real-valued functions. The positive parameters D, and D, are
the diffusion coefficients of the prey and predator, respectively,
while the functions f (h, p) and g (h, p) depend on parameters not
explicitly shown here, and describe the local population dynamics.
For the invasion scenario of interest, we require (1) to have two
spatially homogeneous steady states: a prey-only steady state
h(x, t) = 1,p(x, t) = 0and a coexistence steady state h(x, t) = h*,
p(x, t) = p* where both species persist at some non-zero levels.

We assume that both the prey-only state (1,0) and the
coexistence state (h*, p*) are unstable as fixed points for the
corresponding kinetics system
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In particular, we assume that the linearization of (2) about the
prey-only state has real eigenvalues of opposite sign, while the
linearization about the coexistence state has complex conjugate
eigenvalues with positive real part and non-zero imaginary parts,
and for some nearby parameter values the coexistence state
(h*, p*) undergoes a supercritical Hopf bifurcation for (2).

Fig. 1(a) illustrates an invasion that appears to involve two
travelling fronts, a primary front invading the unstable prey-only
state, and a secondary front invading the unstable coexistence
state. The two fronts do not necessarily travel at the same speed.
Fig. 1(b) shows there may be a single front invading the prey-
only state, but we consider only cases where the dynamics are
still influenced by the coexistence state. The speed at which fronts
invade an unstable steady state has been the subject of much study.
A comprehensive review of this topic is provided by [14]. In this,
van Saarloos defines a linear spreading speed v* given by solving
the saddle point equations
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for (k*, w*, v*), where S(k, ) = 0 is the characteristic equation
for the linearization about the unstable steady state ahead of the
front. While there may be multiple solutions to (3), only those for
which
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are relevant. The equivalence of this approach with the historical
pinch point analysis is discussed in [20]. When there are several
dynamically relevant saddle points, we take the one with the
largest corresponding v* to give the linear spreading speed. Details
of how to compute linear spreading speeds using (3) for the system
(1) are given in the Appendix. Fronts propagating into unstable
states are grouped into two classes: pulled fronts that travel at
speed v* and are in some sense generic, and pushed fronts that
travel at a speed v > v*. If the initial conditions decay sufficiently
rapidly in space, faster than e*™ as x — oo, where A* = J(k*),
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