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a b s t r a c t

Based on the model system undergoing phase separation and chemical reactions, we investigate the
dynamics of propagating dissipative waves under external forcing which is periodic both in space and
time. A phase diagram for the entrained and non-entrained states under the external forcing is obtained
numerically. Theoretical analysis in terms of phase description of the traveling waves is carried out to
show that the transition between the entrained and the non-entrained states by changing the external
frequency occurs either through a saddle–node bifurcation or through a Hopf bifurcation and that these
two bifurcation lines are connected at a Bogdanov–Takens bifurcation point.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Synchronization and entrainment of nonlinear oscillators under
external periodic forcing have been studied for many years. It has
been shown that the phase dynamics which introduces one phase
variable for a limit cycle oscillation is very useful to understand
those phenomena [1,2]. The time-evolution equation for the phase
θ is given by

dθ
dt
= Ω − ω + f (θ), (1)

whereω is the frequency of the limit cycle oscillation andΩ is that
of the periodic external forcing. The function f (θ) is a 2π-periodic
function. It is evident that Eq. (1) for 0 < θ < 2π has a pair of
time-independent solutions for small differences of |ω−Ω|. One is
stable and the other is unstable. If the value |ω−Ω| is increased by
changing the external frequencyΩ , the pair of solutions converges
and disappears. This means that the bifurcation is a saddle–node
bifurcation.
In comparison with these studies of nonlinear oscillators, non-

linear dissipative waves under external forcing have not been
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explored extensively despite the fact that existence of such waves
are one of the most relevant self-organized phenomena far from
equilibrium. Some recent studies towards this direction are given
in Refs. [3–8]. In the previous papers [9,10], we addressed this
problem not only for the external forcing but also for the feed-
back control.We carried out numerical simulations and theoretical
analysis based on a model system in one dimension. In the present
paper, we focus our analysis on the external forcing and investigate
the entrained dynamics in further detail. In the next section (Sec-
tion 2) we start with a description of our model system. Numerical
results are shown in Section 3. The phase dynamics approach is
given in Section 4. Section 5 is devoted to discussion.

2. Model equations

We start with the coupled set of equations for the local con-
centrations in a hypothetical ternary mixture where both phase
separation and chemical reactions take place simultaneously. Let
us assume that molecules A, B and C are adsorbed on a flat sub-
strate with the local concentrations, ψA, ψB and ψC , respectively.
The other chemical species involved in the chemical reactions are
assumed to exist abundantly in the gas phase above the substrate,
and the products are also assumed to dissolve quickly into the
gas phase. Each lattice site of the substrate is occupied by one
and only one molecule A, B or C. Any pair of molecules A and B
that are nearest neighbors exchange their positions randomlywith
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a certain probability, but C molecules do not participate in such
exchanges. In this way, the condition ψA + ψB + ψC = 1 is satis-
fied in the continuum limit, while diffusion is exhibited by A and B
molecules but not C molecules. When these molecules encounter
other molecules in the gas phase, they undergo the chemical re-
actions A → B → C → A with the reaction rates γ1, γ2 and γ3
respectively. It is assumed that the A and B species tend to segre-
gate each other whereas the C component is neutral to both A and
B. Then the time-evolution equations for the local concentrations
ψ = ψA − ψB and φ = ψA + ψB are given by [11]

∂ψ

∂t
= ∇

2
[−∇

2ψ − τψ + ψ3] + a1ψ + a2φ + a3 + Γ (x, t), (2)

∂φ

∂t
= b1ψ + b2φ + b3 + Γ (x, t). (3)

The phase separation process is characterized by the parameter
τ > 0. The coefficients are given in terms of the reaction rates by

a1 = −
(
γ1 +

γ2

2

)
, (4)

a2 = −
(
γ1 −

γ2

2
+ γ3

)
, (5)

a3 = b3 = γ3, (6)

b1 =
γ2

2
, (7)

b2 = −
(γ2
2
+ γ3

)
. (8)

The function Γ (x, t) stands for the external force which is moving
steadily to the right

Γ (x, t) = ε cos(qf x−Ωt), (9)

with the strength ε, the wave number qf and the frequencyΩ [12].
Here we suppose that the system is exposed by illuminating light
through a periodically arrayed slit and the slit moves at a constant
velocity Ω/qf . As a result, we assume that the reaction rate γ3 is
modified such that γ3 → γ3 + Γ . In this way, the Γ term is added
both in Eqs. (2) and (3) since a3 = b3 = γ3 as Eq. (6). We have
ignored a term Γ φ arising from the γ3φ term in Eqs. (5) and (8)
assuming a sufficiently small forcing ε.
We have studied earlier the solution of Eqs. (2) and (3) without

the external forcing [11]. The uniform time-independent solution
becomes unstable by increasing the parameter τ with fixing other
parameters. Depending on the rate constants, e.g. γ3, there are two
possibilities. One is a Hopf bifurcation at a finite wave number. We
have verified that a traveling wave appears above the threshold.
The other is a Turing-type bifurcation beyond which a spatially
periodic motionless pattern appears.
Throughout this paper, we will fix the parameters as τ = 1.6,

γ1 = 0.3, γ2 = 0.16 and γ3 = 0.05. This set of the parameters
are close to the Hopf bifurcation threshold τ = τc = 1.46 at a
finite wave number q = qc ≈ 0.9 [11]. The frequency of oscillation
at the bifurcation point is given by ωc ≈ 0.07 and the external
frequencyΩ is varied around this critical frequency to investigate
the dynamics under forcing.

3. Numerical simulations

We have carried out numerical simulations of Eqs. (2) and (3)
with (9) in one dimension. The system size is L = 20π with a
periodic boundary condition and the space is divided intoN = 128
cells with the cell size δx = 20π/N . This system size is almost
commensuratewith the critical spatial period of the travelingwave
`c = 2π/qc ≈ 2π/0.9. The wave number of the external force is
fixed to be the same as qc in order to avoid extra complications
of dynamics. The explicit Euler scheme is employed with the time
increment δt = 0.001. Initially we provide a wave propagating to

Fig. 1. Phase diagram for the entrainment with the external forcing traveling to
the right on the ε −Ω plane. The meaning of the symbols is given in the text. The
solid lines are the saddle–node bifurcation thresholdswhereas the dotted line is the
Hopf bifurcation threshold. These two lines are obtained from the phase equations
of motion (12) and (13). The Bogdanov–Takens bifurcation point is indicated by the
double circle.

the right without the external forcing and then, at a certain time
instant, switch on the external force (9) which is also traveling to
the right.
Fig. 1 represents the phase diagram on the ε − Ω plane ob-

tained numerically asymptotically in time. The traveling wave is
completely entrained by the external force in the region filled by
symbols (+) whereas it is not entrained in the region filled by �.
In the region indicated by •, the wave trains undergo an oscilla-
tion trapped at the potentialminima of the traveling external force.
The space–time plot of these dynamics for ε = 0.007 is displayed
in Fig. 2 where the gray scale indicates the magnitude of ψ . The
entrained state (Ω = 0.07) is shown in Fig. 2(a). Fig. 2(b) illus-
trates the drift state (Ω = 0.1)where thewave speed ismodulated
periodically every time the external force catches up the traveling
waves. Fig. 2(c) exhibits the trapped state (Ω = 0.02)where each
wave trainmoves back and forth propagating gradually to the right
on an average. In the narrow region indicated by the black triangles
in Fig. 1, propagation reversal occurs. That is, thewave propagating
to the right starts to propagate to the left after applying the exter-
nal force which is propagating to the right. The mechanism of this
apparently strange phenomenon will be clarified in Section 4. In
particular, see Fig. 6.
The above results are obtained in the situation that the external

forcing is traveling to the same direction as the propagating wave.
It should be noted, however, that Eqs. (2) and (3) without the ex-
ternal forcing have the waves traveling both to the right and to the
left depending on the initial condition. Therefore, it is interesting to
see what dynamics appears when the forcemoving to the opposite
direction is applied. The phase diagram in such a case is obtained
numerically as shown in Fig. 3where thewhite circles indicates the
region that thewaves keep propagating to the initial directionwith
the periodic modulation by the external force traveling to the op-
posite direction. That is, the waves are not entrained. In the region
indicated by other symbols, the waves change their propagating
direction after switching on the external force and the asymptotic
dynamics are the same as those in Fig. 1.

4. Phase equations

In order to clarify the dynamics in the phase diagram displayed
in Fig. 1, we derive the phase equations of motion for the propa-
gating waves under the external force. We represent the solutions
of Eqs. (2) and (3) as

ψ = ψ0 + ψ1(t) cos(qcx−Ωt + θ1(t)), (10)

φ = φ0 + φ1(t) cos(qcx−Ωt + θ2(t)), (11)
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