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a b s t r a c t

Recent studies of a firing rate model for neural competition as observed in binocular rivalry and central
pattern generators [R. Curtu, A. Shpiro, N. Rubin, J. Rinzel, Mechanisms for frequency control in neuronal
competition models, SIAM J. Appl. Dyn. Syst. 7 (2) (2008) 609–649] showed that the variation of the
stimulus strength parameter can lead to rich and interesting dynamics. Several types of behavior were
identified such as: fusion, equivalent to a steady state of identical activity levels for both neural units;
oscillations due to either an escape or a releasemechanism; and a winner-take-all state of bistability. The
model consists of two neural populations interacting through reciprocal inhibition, each endowed with
a slow negative-feedback process in the form of spike frequency adaptation. In this paper we report the
occurrence of another complex oscillatory pattern, the mixed-mode oscillations (MMOs). They exist in
the model at the transition between the relaxation oscillator dynamical regime and the winner-take-
all regime. The system distinguishes itself from other neuronal models where MMOs were found by
the following interesting feature: there is no autocatalysis involved (as in the examples of voltage-gated
persistent inward currents and/or intrapopulation recurrent excitation) and therefore the two cells in the
network arenot intrinsic oscillators; the oscillations are instead a combined result of themutual inhibition
and the adaptation.We prove that theMMOs are due to a singular Hopf bifurcation point situated in close
distance to the transitionpoint to thewinner-take-all case.Wealso show that in the vicinity of the singular
Hopf other types of bifurcations exist and we construct numerically the corresponding diagrams.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Mixed-mode oscillations (MMOs) were observed in both ex-
periments and models of systems from chemistry [1–7], physics
[8,9] and neuroscience [10–16], and they are defined as com-
plex oscillatory patterns consisting of small amplitude oscillations
followed by large excursions of relaxation type, in each periodic
cycle. For example, localized structures of large amplitude oscilla-
tions on a background of small amplitude oscillations were iden-
tified in experiments on the photosensitive Ru(bpy)3-catalyzed
Belousov–Zhabotinsky reaction in a thin layer of silica gel with
photochemical global negative feedback imposed through illumi-
nation [5]; in the neural system, MMOs were found in central
pattern generators such as the lower brain stem network (the pre-
Bötzinger complex) that generates respiratory rhythm in mam-
mals [11], or in electrophysiological (in vitro) studies of spiny
stellate cells in layer II medial entorhinal cortex [10]; more re-
cently, MMOs were also discovered in dusty plasmas [9].
What are the functional consequences of the MMOs in these

chemical, physical and biological systems is still an open question,
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as well as is the understanding of the underlying mechanisms that
produce them.
The number, amplitude and shape of small and large excur-

sions in MMOs may vary depending on the specific structure of
the system (and so, on the mechanism leading to MMOs) and
on the values of certain parameters. Using techniques from dy-
namical systems and bifurcations theory, several distinct mech-
anisms have been proposed to explain the occurrence of MMOs
such as break-up (loss) of stability of a Shilnikov homoclinic
orbit [17,18], break-up of an invariant torus [19], subcritical Hopf-
homoclinic bifurcation [20], a (generalized, folded node type)
canard phenomenon [21–24], and, more recently, a singular Hopf
bifurcation [25].
In particular, the last two mechanisms are associated with

multiple-timescale dynamical systems. A common feature is that
the slow stable and unstable manifolds of the system (situated
exponentially close to the critical manifold) play an important
role in the generation of MMOs as they are involved in both the
definition of the global return map that corresponds to the large
relaxation-like excursion, and in the generation of small amplitude
oscillations. The intersection between the slow stable and slow
unstable manifolds (named the curve of folds or, simply, the fold)
is especially of interest.
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The distinction between a (folded node type) canard generated
MMO and a singular Hopf generated MMO comes mainly from
the following fact: in the former case there is no equilibrium
point of the original system in the neighborhood where the small
(subthreshold) oscillations occur, while in the latter there is. The
theory has been developed for systems with at least one fast and
at least two slow variables since that guarantees that the solutions
are generic [25,26].
In the first case, the folded node is an equilibrium of the

desingularized flow on the critical manifold but not an equilibrium
of the original fast–slow system. The folded node belongs to
the fold. A whole family of solutions crosses via the folded
node singularity from the attracting to the repelling branch of
the slow manifold. The folded node possesses a unique (strong)
canard and non-unique (weak/secondary) canardswhich delineate
a trapping region (a funnel). Then any solution that ends up in the
funnel passes near the folded node singularity and, consequently,
experiences a delay; the delay is due to the rotational properties
of canards with the primary weak canard having the role of the
rotational axis [26].
In the singular Hopf case, an equilibrium of the original

fast–slow system exists in the neighborhood of the curve of folds.
In fact, a Hopf bifurcation point is on the critical manifold but
displaced from the fold by O(ε)-distance. Then the intersections
of the stable and unstable manifolds of this equilibrium point
together with those of the slow (stable and unstable) manifolds
contribute to the generation of MMOs [25,27].
In a recent paper, Guckenheimer [25] opens an interesting

discussion and direction for future research about the differences
in the characteristics of MMOs due to singular Hopf points and
those created through canards at folded nodes: for example, it
seems that in the case of singular Hopf the small oscillations of
MMOs start with very low amplitude, then grow slowly before
entering the relaxation oscillator phase. In the case of folded nodes,
the small oscillations of MMOs decrease and then increase in
amplitude, usually with the same number of cycles.
We should mention though that even in the case of the singular

Hopf, it is possible that a folded node still exists; nevertheless this
folded node is there because a parameter of the system varies
close to a value where a folded saddle–node type II singularity
occurs. The folded saddle–node type II singularity corresponds to
a transcritical bifurcation where the Hopf point crosses the curve
of folds [25,27,28]. That might explain why, in the literature, some
models with MMOs that were associated to folded node canards
exhibit only the increasing-in-amplitude small oscillations but not
the decreasing-in-amplitude ones (see for example [16]).
Mixed-mode oscillations in a two-cell inhibitory neural network.We
investigate in this paper the existence of MMOs in a neural sys-
tem with two fast and two slow variables and show that they are
associated with a singular Hopf bifurcation. The system models
competition between two populations of neurons and has been
used to describe perceptual bistability due to ambiguous external
stimuli [29–31], or, in a slightly modified form, for central pattern
generators [32–34]. For example, binocular rivalry (a classical ex-
ample of perceptual bistability) is experienced by a person when
his/her eyes are exposed simultaneously to two significantly differ-
ent images. Over a large range of stimulus conditions, the person
reports an alternation between the two competing percepts (im-
ages) as opposed to a mixture of them. The alternation is therefore
called perceptual rivalry. In modeling terms, the alternation corre-
sponds on average to an anti-phase periodic solution; competition
is implemented via reciprocal inhibition that acts effectively as a
fast positive feedback (disinhibition); in addition, a slow negative-
feedback process is assumed and it is associated to either the spike
frequency adaptation or to the synaptic depression.

A very interesting feature of this model is that its oscillations
(simple and/or mixed-mode) are a consequence of both coupling
and local feedback. In other words, the two cells (populations) in
the network are not intrinsic oscillators; in fact it can be proved
that, once decoupled (see (1) in Section 2 with β = 0), the only
possible state of each cell is the equilibrium [30]. This property
distinguishes the system we investigate here from other neuronal
models where MMOs were found: coupled-oscillators [12,13,23]
or neuron models involving autocatalysis in either an intrinsic
process form (like voltage-gated persistent inward currents) or
as synaptic process (like intrapopulation recurrent excitation)
[14–16,24]. There is no autocatalysis in this two-cell competition
network, the alternation being in fact a combined result of mutual
inhibition and adaptation. That has direct implications on the
return mechanism (large amplitude excursions) involved in the
formation of MMOs [27].
Moreover, comparedwith themodelsmentioned above, system

(1) is relatively simple and so it has the advantage of being
tackled much easily with analytical methods. In the following
sections we identify and characterize analytically the conditions
for a singular Hopf bifurcation to exist at nontrivial equilibria and
we construct the associated normal form (Section 3.2). Once the
normal form is determined, we use it to explain the existence of
MMOs at the transition between rivalry oscillation and winner-
take-all dynamical regimes (Section 4). In addition,we numerically
investigate the phase space of (1) close to the transition point and
identify here several interesting limit point sets (Section 2.1).

2. Model description and numerical investigation

The two-cell (two-population) inhibitory neural network with
adaptation that we study in this paper is modeled by a four-
dimensional system of ordinary differential equations,

du1
dt
= −u1 + S(I − βu2 − ga1),

du2
dt
= −u2 + S(I − βu1 − ga2),

τ
da1
dt
= −a1 + u1,

τ
da2
dt
= −a2 + u2, (1)

where τ � 1 and S is a nonlinear gain function of inverse
F = S−1. The function S satisfies certain conditions such as being
differentiable, monotonically increasing from limx→−∞ S(x) = 0
to limx→∞ S(x) = 1 and with convexity-change (from concave-
up to concave-down) at some given value x = θ (Fig. 1A). Let us
define u0 as the value the function S takes at θ , that is u0 = S(θ).
Then the following conditions are true for the inverse function F :
limu→0 F ′(u) = limu→1 F ′(u) = ∞, F ′′(u) < 0 for u ∈ (0, u0),
F ′′(u) > 0 for u ∈ (u0, 1), F ′′(u0) = 0 (see the graph of F ′ in
Fig. 1B). The typical gain function is the sigmoid and it depends on
two parameters (positive r and real θ ) that control the slope and
the activation threshold,

S(x) =
1

1+ e−r(x−θ)
. (2)

Each fast equation is associated with one population of neurons
and describes the time evolution of its spatially averaged firing
rate (uj, j = 1, 2); each slow equation monitors the (slow)
time fatigue accumulation (aj, j = 1, 2); competition is achieved
through mutual inhibition of strength β and negative feedback
(such as spike frequency adaptation) of strength g; in addition,
each population receives external stimulation of equal strength I
(β , g and I are all positive parameters).
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