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We explore methods to locate subcritical branches of spatially periodic solutions in pattern forming
systems with a nonlinear finite-wavelength instability. We do so by means of a direct expansion in the
amplitude of the linearly least stable mode about the appropriate reference state which one considers.
This is motivated by the observation that for some equations fully nonlinear chaotic dynamics has been
found to be organized around periodic solutions that do not simply bifurcate from the basic (laminar)
state. We apply the method to two model equations, a subcritical generalization of the Swift-Hohenberg
equation and a novel extension of the Kuramoto-Sivashinsky equation that we introduce to illustrate
the abovementioned scenario in which weakly chaotic subcritical dynamics is organized around periodic
states that bifurcate “from infinity” and that can nevertheless be probed perturbatively. We explore the
reliability and robustness of such an expansion, with a particular focus on the use of these methods
for determining the existence and approximate properties of finite-amplitude stationary solutions. Such
methods obviously are to be used with caution: the expansions are often only asymptotic approximations,
and if they converge their radius of convergence may be small. Nevertheless, expansions to higher order
in the amplitude can be a useful tool to obtain qualitatively reliable results.
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1. Introduction

Many non-equilibrium systems show spatio-temporal instabil-
ities of some kind: ripples on sand, convection rolls in fluids, turbu-
lence in pipe flows, patterns in crystal growth, etc. If they are driven
far enough away from equilibrium (usually quantified by some
control parameter), a homogeneous initial state (say, a flat bed of
sand, a laminar flow or a straight front) becomes unstable with re-
spect to spatial perturbations of a certain wavelength. Often, per-
turbations with a wavenumber around a critical wavenumber start
to grow, and the system ends up in an inhomogeneous state. This
state may feature regular stationary or oscillatory patterns, trav-
elling waves, or even spatiotemporal chaos or turbulence. Such
finite-wavelength instabilities and the patterns they give rise to have
been the focus of much research in the past few decades [1-8].

As is well known, there are a number of ways in which the
transition from a homogeneous state to a patterned state can
occur. Three of the most important ones are depicted schematically
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in Fig. 1. In (a) we sketch the common supercritical transition
scenario, in which a stable pattern branch bifurcates off the
homogeneous state at the point at which the homogeneous steady
state becomes linearly unstable at some critical value of the control
parameter. This scenario occurs frequently when the nonlinearities
in the system lead to saturation. The amplitude of the pattern
vanishes as the control parameter approaches its critical value
from above. Close to the transition point, the amplitude generally
scales as the square root of the distance to the transition point.
A well-known example of this type of transition is the transition
to rolls in Rayleigh-Bénard convection [1]. Fig. 1(b) depicts the
case of a subcritical bifurcation: the system becomes linearly
unstable beyond a critical value of the control parameter, but
even below this point, there are nontrivial finite amplitude pattern
solutions. The amplitude no longer vanishes when the critical
point is approached from above. This type of behavior is found
for example in Rayleigh-Bénard convection with non-Boussinesq
effects [9,5], and in in many other systems without an “up-down”
symmetry, like 2-dimensional reaction-diffusion systems with a
Turing instability [10,5]. In Fig. 1(c) we finally sketch the case
which is sometimes referred to as a bifurcation from infinity [11]:
the homogeneous state is linearly stable for all values of the control
parameter, but for sufficiently large control parameters there
exists a branch of finite amplitude nontrivial solutions which in
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Fig. 1. Typical bifurcation diagrams for (a) a supercritical transition, (b) a subcritical
transition and (c) a subcritical bifurcation from infinity. Solid lines denote linearly
stable states, dashed lines are linearly unstable. Note that in practice the nonlinear
solutions on the upper branch are sometimes not actually stable, but in such cases
they can still organize the dynamics. This happens for instance in the transition to
turbulence in Couette and pipe flow [12,13] and in the equation we construct and
analyse in Section 4.

practice govern the dynamics of the system under some conditions.
The lower (unstable) branch defines a kind of threshold amplitude:
if perturbations are smaller than this amplitude, the system returns
to the homogeneous state; if they are larger, the system ends up
on the upper branch. The best known example of this scenario is
the transition to turbulence in Newtonian fluids in plane Couette
or Poiseuille pipe flow, although the nature of the “stable” and
“unstable” branches is not at all clear in this case [12,13]. Two of
us recently proposed that the same scenario may apply to shear
flows of non-Newtonian viscoelastic fluids [ 14,15]. Note that while
in the figure we indicate the upper branch to consist of stable
solutions, this is often not the case in practice. One example is
given by the exact two-dimensional nonlinear states in the form
of travelling waves that were found in Newtonian plane channel
flow [16]. On the upper branch, these solutions are stable in
two dimensions, but they are unstable when an infinitesimally
small three-dimensional perturbation is introduced [17]. Another
example is Newtonian turbulence in pipe flows where three-
dimensional nonlinear solutions play an important role in the
dynamics, even though they are themselves unstable [12,13].

The partial differential equations that usually describe pattern-
forming systems cannot be solved analytically in general. However,
as the bifurcation diagrams already suggest, near a transition it
is often possible to find a reduced description of the spatially
periodic or travelling-wave solutions in terms of just the amplitude
of the pattern. For supercritical transitions, the amplitude equation
approach has been very successful [1-8].

For strongly subcritical transitions, however, this approach
essentially breaks down. At the transition, the stable branch
already has a nonzero amplitude, and the usual expansion in
principle does not work, at least not for the most relevant
stable (upper) branch. The lower branch of unstable solutions
still grows as in the supercritical case, so unstable states can be
found perturbatively sufficiently close to the transition (and thus,
threshold amplitudes of perturbations). If the subcritical character
is sufficiently weak, it is often possible to adapt the expansion to
find also the stable solutions, as for example in Rayleigh-Bénard
convection with non-Boussinesq effects [9]. The expansion is then
formally no longer consistent, but works in practice because
effectively there is a another small parameter (e.g., the smallness
of the non-Boussinesq effects).

From a more formal point of view, one might argue that one
simply should not use amplitude expansions to probe subcritical
bifurcations and especially the bifurcations from infinity of Fig. 1(c)
that motivate us, since the amplitude expansion, which is only an
asymptotic expansion, can clearly not be trusted to give reliable
results about the existence and stability of finite-amplitude
patterns. In practice, however, such a strict point of view is not
the most constructive one. After all, if one is investigating a
new problem about which not much is known a priori, one does
not necessarily know in advance whether patterns one observes

are due to some supercritical or subcritical transition, or even a
bifurcation from infinity—one actually does a calculation to find
out what the nature of the problem is! Suppose then one finds
in an amplitude expansion that the sign of the cubic nonlinearity
signals that there is no saturation of the pattern amplitude at the
lowest nontrivial level, in other words, that the bifurcation is not
supercritical. Should one then simply stop at that point because the
amplitude expansion formally cannot handle such a situation?

Clearly, such a defeatist attitude is not to be expected from
an applied researcher who is eager to understand the nonlinear
behavior of the problem at hand. In practice, if there is reason
to believe on physical grounds that the transition is weakly
subcritical, even though there may be no a priori small parameter
in the equations that suggests this, such a practitioner of nonlinear
science may want to try, nevertheless, to calculate the next (fifth
order) term in the expansion, in the hope of being able to estimate
how weak the subcritical character really is, and how large the
amplitudes of the nonlinear pattern actually might be. And if such
a calculation is done, one faces the question as to how reliable this
estimate actually is and what the optimal truncation (if any) of the
expansion might be.

Two of us recently faced a similar dilemma in a study of the
nonlinear stability of viscoelastic shear flows [14,15,18] where we
suspected, on physical grounds, the relevance of the bifurcation
from infinity scenario of Fig. 1(c). Motivated by the expectation
that the lower (unstable) branch — which determines the nonlinear
instability threshold - would actually be close to the horizontal
axis for intermediate values of the control parameter, and that
the smallness of the transition amplitude could play the role of
an intrinsic small parameter hidden in the problem, an amplitude
expansion up to eleventh order was performed to estimate the
nonlinear threshold. In this case, it actually does appear that useful
information can be extracted from analyzing the behavior of the
expansion to such high orders.

This paper is motivated by these observations and by our own
experience, that even though hard and generally valid statements
are difficult to make about the behavior of intrinsically asymptotic
expansions, it is very profitable to get a better feel for how far one
may push amplitude expansions to probe such intrinsically sub-
critical transitions. One of the main aims of this paper is to ex-
plore the possible signatures for failure or success of this prag-
matic approach. Indeed, in studying these issues, we have empir-
ically found that it is sometimes possible to push the expansions
further by focusing on a limited question, like the existence and
nature of a nonlinear (subcritical) branch of solutions. We discuss
this method and its basis, and compare it to the results one obtains
from a more straightforward amplitude expansion. Moreover, in
order to illustrate that such expansion methods can even be useful
in cases in which the nonlinear solutions that one can probe per-
turbatively are unstable but nevertheless important for the dynam-
ics, we introduce a new simple model based on two coupled equa-
tions whose bifurcation diagram corresponds to the “bifurcation
from infinity” case of Fig. 1(c), and which mimics a case in which
Kuramoto-Sivashinsky-like chaos [19-21] is organized around ex-
act periodic solutions. The gross features of the turbulent nonlinear
branch of this equation are indeed captured well with our ampli-
tude expansion, a finding that gives hope for our earlier work on
nonlinear visco-elastic instabilities [15].

We stress here at the outset that our goal is rather limited.
First of all, the equations we study are only used as exploratory
examples. Secondly, we neither aim nor claim to investigate the
full nonlinear dynamics of these equations; instead, we will focus
simply on determining the presence and location of the subcritical
branches of periodic solutions in the approximation so that only
the amplitude of one mode is retained. The stability of the branches
is hence only studied within this subspace of periodic solutions
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