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Abstract

Existence of self-similar solutions to the Oort—Hulst—Safronov coagulation equation with multiplicative coagulation kernel is established.
These solutions are given by s(r)~F ¥ (y/s(t)) for (t,y) € (0,T) x (0,00), where T is some arbitrary positive real number, s(t) =
(B—=1)(T - t))_l/ G=7) and the parameter T ranges in a given interval [, 3). In addition, the second moment of these self-similar solutions
blows up at time T'. As for the profile ¥, it belongs to L0, oo; yzdy) for each T € [t,, 3) but its behaviour for small and large y varies with the

parameter T.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Coagulation equations are mean-field models describing
the dynamics of the mass distribution function of a system
of particles growing by successive mergers. This class of
models includes in particular the well-known Smoluchowski
coagulation equation [16,17]

1 y
o ft,y) = 3 /0 a(ys, y — y&) [,y — yu) f(£, ys) dys

—f(t,y)f0 a(y, y«) f(&, ys) dyx, e9)

where f(t,y) > 0 denotes the mass distribution function of
particles with mass y € (0, co) at time # > (. The coagulation
kernel a(y, ys) describes the likelihood that the encounter of a
particle of mass y with a particle of mass y, produces a particle
of mass y+y, and satisfies a(y, y«) = a(y«, y) = 0. Observing
that mass is obviously conserved during each coagulation event,
a reasonable expectation is that the total mass

me=ﬁ v £t y) dy

of the system of particles at time ¢ should remain constant
throughout time evolution. It is however well known now that
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this property fails to be true for coagulation kernels growing
sufficiently rapidly for large v, y, such as a(y, y«) = (y y«)*/?
for A € (1,2]. For such kernels, there is actually a runaway
growth which produces particles with infinite mass in a finite
time, a phenomenon called the occurrence of gelation (see,
e.g., the review articles [1,3,8,10] for more information). Let us
mention at this point that, though formal arguments predicting
the occurrence of gelation have been known for some time,
a rigorous proof has only been supplied recently in [6] by
probabilistic arguments and in [5] by deterministic arguments.
Now, introducing the gelation time

Tge1 :=inf {t > 0 such that M;(¢) < M(0)}

and assuming that Ty is finite, a detailed analysis of the
behaviour of f(¢) just before the gelation time is required
to elucidate the gelation mechanism. For homogeneous
coagulation kernels such as a(y, y,) = (y y*))‘/2 for A € (1, 2],
it is commonly believed that such a behaviour is self-similar,
that is, there are T € (0,00), s : [0, Tge)) — (0, 00) and

¢ : (0, 00) — (0, 0o) such that
1 y
s ¥ (E) @

A first task is then to look for self-similar solutions fs to
(1) as described in (2). This problem seems however to be

s(t) > o0 and f(,y)~ fs,y) =

ast — Tgel.
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of considerable difficulty and is only completely solved for
the multiplicative coagulation kernel a(y, y«) = y y« [3,12].
For other kernels, no result is available to our knowledge.
Actually, the first difficulty to be faced is determining the value
of the exponent 7. For homogeneous coagulation kernels with
homogeneity degree A € (1,2] (i.e. a(§y,Eyy) = g a(y, y«)
for (£, v, yx) € (0,00)3), the value T = (A + 3)/2 has been
proposed in [2] but numerical simulations performed in [9,11]
seem to indicate a different value of t. We refer the reader to
the review article [10] for a thorough discussion of this issue. In
fact, for the only case which is solved, namely a(y, y.) = y v,
there is an interval of values of T for which there exists a self-
similar solution f7 (¢, y) := s(#)™" @ (y/s(t)) to (1) [12]. More
precisely, it follows from [12] that, if a(y, y«) = ¥y ys, T €
[5/2,3) and T > 0, there is a self-similar solution f; (¢, y) :=
s()7 @ (y/s(1)) to (1) with s(t) = (T — 1)~1/C=),

@s52(y) 1= (dm) M2 y T2 e/

and, for t € (5/2, 3),

T

o (y) ~coy " asy—0 and

Pr(y) ~ oo y TV sy - 00

for some positive constants cg and ¢, depending only on t. For
that particular case, the homogeneity degree of a is A = 2 and
the value 5/2 = (A 4 3)/2 of t suggested in [2] does indeed lie
within the range of values of t for which a self-similar solution
does exist. It is nevertheless a peculiar value since it is the only
value of t for which ¢; has a finite third moment (and actually
decays exponentially fast as y — 00). As a final comment,
let us mention that the Smoluchowski coagulation equation (1)
with the multiplicative kernel a(y, y«) = y y, can be reduced
to a simpler problem by applying a Laplace transform. Thanks
to this property, the existence of self-similar solutions can be
proved, and the question of convergence studied as well [12].
However, this trick does not work for other gelling kernels.

Besides the Smoluchowski coagulation equation (1), there
are other coagulation equations to which the previous
discussion on the gelation phenomenon equally applies, and
in particular the Oort—Hulst—Safronov (OHS) coagulation
equation [14,15]

y
O f(t,y) = —0y (f(t,y) /O Vi a(y, ys) f(t, ¥s) dy*)

) f a(y. 3s) £t 2) dys. 3)
y

For the OHS equation (3), the occurrence of gelation is also
known to take place for a(y, y«) = (y y)*/? with A €
(1, 2] [4,7]. The purpose of this work is then to show that,
still for the multiplicative kernel a(y, yx) = y Y4, a family
frt,y) = s@®)7" ¥ (y/s(t)) of self-similar solutions to (3)
can be constructed, the parameter T ranging in a non-empty
interval [, 3) with t. < 5/2. Our result shows in particular
that, in that case, the value 5/2 does not seem to play any special
role.

From now on, we thus assume that a(y, y«) = y y, for
(y, y+) € (0, 00)? and look for self-similar solutions fs to (3)

of the form

fst,y) =

y 2

N ) t» S 01 ) 4
o w(s(t)) (1.9 € (0, 00) )
the parameter v and the functions s and ¥ to be determined
with the requirement that s(t) — oo as t — T for some fixed
T > 0. Inserting the self-similar ansatz (4) in (3) yields the
existence of a real number w such that

d
TOsO " =w. 5)

d d y
w (rw<y)+y %) =% (y ¥ (y) /O Y2 () dy*)

+y v () Y« U (ye) dyx  (6)
y

for (¢, y) € (0,T) x (O, oo)z. Since we expect the function s
to be an increasing function of time which blows up at time T,
these two properties imply that

w>0 and 71 < 3. (7

Consequently, s(r) = (w3 —1)(T —1))"/C= fort € [0, T).
We next observe that, if  satisfies (6), then so does V¥, 5 (y) =
0 Y (oy) with 0 w o3 instead of w. We may thus eliminate
the parameter w and fix it to the value w = 1. Then,

sy =(B—=1NT —1t) /G tel0, 7). (8)

Having identified the function s in terms of 7, it remains to
figure out for which values of 7 the Eq. (6) with w = 1 has
a meaningful solution. Besides non-negativity, we will require
that i has a finite second moment, that is,

ve L'(0,00; y2dy), ¥ >0 ae.in(0,00),¥ £0, (9)

which is somehow a minimal requirement on i for fs to solve
(3) at least in a weak sense. Furthermore, if i fulfils (9), we
deduce from (4) that

00 5 B 1 00 5
/0 y fs(l:)’)dy—mfo y ¥ (y)dy,

so that the second moment of fs blows up at time 7. In
this connection, we recall that the occurrence of gelation of a
solution f to (3) with a(y, y«) = y y. is related to the blow-up
of the second moment of f [4]. Indeed, it is conjectured that the
gelation time and the blow-up time of the second moment of f
coincide.

Our main result is then to exhibit a range of values of 7 for
which there exists a solution to (6) with w = 1 satisfying (9).
In order to state it, some notation and preliminary results are
needed which we gather below. We denote by t. (. ~ 2.255)
the unique real number in (2, 3) such that

(. — 1) 1n<f"_;> 2. (10)

¢

For t € [t,, 3), the function g, defined by

g:(@)=2z—(t—1) In (1 + %) z€[0,00), (11)



Download English Version:

https://daneshyari.com/en/article/1899110

Download Persian Version:

https://daneshyari.com/article/1899110

Daneshyari.com


https://daneshyari.com/en/article/1899110
https://daneshyari.com/article/1899110
https://daneshyari.com/

