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h i g h l i g h t s

• A precompressed locally resonant granular chain is considered.
• An effective nonlinear Schrödinger modulation equation is derived.
• Alternating parametric intervals of dark and bright breathers are identified.
• Stability of stationary dark breathers is investigated.
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a b s t r a c t

We study a locally resonant granular material in the form of a precompressed Hertzian chain with linear
internal resonators. Using an asymptotic reduction, we derive an effective nonlinear Schrödinger (NLS)
modulation equation. This, in turn, leads us to provide analytical evidence, subsequently corroborated
numerically, for the existence of two distinct types of discrete breathers related to acoustic or optical
modes: (a) traveling bright breathers with a strain profile exponentially vanishing at infinity and (b)
stationary and traveling dark breathers, exponentially localized, time-periodic states mounted on top
of a non-vanishing background. The stability and bifurcation structure of numerically computed exact
stationary dark breathers is also examined. Stationary bright breathers cannot be identified using the NLS
equation, which is defocusing at the upper edges of the phonon bands and becomes linear at the lower
edge of the optical band.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Granular crystals are tightly packed arrays of solid particles
that deform elastically upon contact via nonlinear Hertzian
interactions [1–3]. The dynamics of these systems ranges from
weakly nonlinear, when the initial overlap of the neighboring
particles due to the static precompression is much larger than
their relative displacement, to the strongly nonlinear regime
characterized by relatively small or zero precompression. This
provides an ideal setting for exploring nonlinear waves, including
traveling [1–3] and shock waves [4,5].

A particularly interesting class of nonlinear excitations exhib-
ited by these materials are the so-called discrete breathers [6–14],
i.e., time-periodic and exponentially localized in space oscillations
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that are also encountered in a wide variety of other nonlinear sys-
tems (see [15,16] and references therein). There are two distinct
types of breathers. Bright breathers have a profile (of strain in the
case of granular systems) exponentially decaying to zero at in-
finity and are known to exist in granular materials with defects
[11,13], heterogeneous granular chains such as dimers or trimers
[6,12,14] and Hertzian chains with a harmonic onsite poten-
tial modeling Newton’s cradle or granular chains embedded in a
matrix [9,10,17]. Dark breathers, on the other hand, are spatially
modulated standing waves with amplitude that is constant at
infinity and vanishes at the center. They have been recently iden-
tified and analyzed in a homogeneous granular chain with pre-
compression [7], and their existence was experimentally verified
in damped, driven granular chains in [8].

In this work we consider both types of discrete breathers
in a locally resonant granular chain characterized by very rich
nonlinear dynamics [18,19]. This novel granular metamaterial has
tunable band gaps and can be potentially used in engineering

http://dx.doi.org/10.1016/j.physd.2016.05.007
0167-2789/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physd.2016.05.007
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2016.05.007&domain=pdf
mailto:aav4@pitt.edu
http://dx.doi.org/10.1016/j.physd.2016.05.007


28 L. Liu et al. / Physica D 331 (2016) 27–47

applications involving shock absorption and vibration mitigation.
The system consists of a regular granular chain with additional
degrees of freedom due to attached linear resonators. Its recent
experimental implementations include mass-in-mass granular
chains with internal linear resonators placed inside the primary
beads [20], mass-with-mass chains with external ring resonators
attached to the beads [21] (see also [22]) and woodpile phononic
crystals consisting of vertically stacked slender cylindrical rods in
orthogonal contact [23]. Under certain assumptions, each of these
experimental setups can be modeled by a Hertzian chain with a
secondary mass attached to each primary bead by a linearly elastic
spring, with the ratio of the secondary and primary masses being
the main control parameter. In a recent work [24], we studied
the strongly nonlinear dynamics of this system in the absence of
precompression. Through a combination of asymptotic analysis
and numerical computations, we provided evidence for the
existence of exact dark breathers in the locally resonant granular
chain and investigated their stability and bifurcation structure. In
addition,we studied small-amplitude periodic travelingwaves and
identified the conditions under which the system has long-lived
(but not exact) bright breathers.

Here we turn our attention to the locally resonant granular
chain under nonzero precompression. In the non-resonant limit
(regular granular chain, zero mass ratio), such a system belongs
to the general class of Fermi–Pasta–Ulam (FPU) lattice models
(e.g. see [25–35] and references therein), with a dispersion rela-
tion for plane wave solutions of the linearized problem possess-
ing only acoustic spectrum. At finite mass ratio, the dispersion
relation has both acoustic and optical branches. In this respect
the problem is somewhat reminiscent of diatomic FPU chains, al-
though the optical branch is quite different in our case. In the small-
amplitude limit the dynamics of the system is weakly nonlinear.
This dynamical regime has been well studied for the FPU problem,
as has its generalized version with an additional onsite potential
[16,27–29,31–34,36,37]. In particular, the established conditions
for bifurcation of discrete breathers for this class of problems
[16,32,33] rule out the existence of bright breathers in the homo-
geneous non-resonant granular chain under precompression, the
limiting case of our problem when the mass ratio is zero and the
dispersion relation has only an acoustic branch. In this case, dark
breathers were identified in [7] as the only possible type of intrin-
sically localizedmode. The defocusing nonlinear Schrödinger equa-
tion (NLS), which has tanh-type solutions, is derived in [7] as the
modulation equation for waves with frequencies near the edge of
the linear acoustic spectrum and used to construct initial condi-
tions for numerical computation and analysis of the dark breathers.
In another limiting case, when the mass ratio goes to infinity and
the secondary masses have zero initial conditions, the system ap-
proaches the Newton’s cradle model with precompression, a prob-
lemwith a purely optical dispersion relation. In this case, traveling
bright breathers were investigated in [10] via the analysis of the
corresponding focusing NLS, which admits sech-type solutions.

To explore the weakly nonlinear dynamics at finite mass
ratio, we use a multiscale asymptotic method (see [31,36,37]
and references therein) and derive the classical NLS equation,
yielding closed-form solutions of sech-type and tanh-type in the
focusing and defocusing cases, respectively. In particular, we show
that parameters (mass ratio and precompression) can modify the
number of focusing regions in the acoustic and optical bands,
a phenomenon which does not occur in classical homogeneous
and diatomic granular chains [7,14]. This property is particularly
interesting for applications because precompression is easy to
tune experimentally. Another special feature of the resonant
granular chain is that the cubic NLS coefficient vanishes at the
zero wavenumber corresponding to the lower edge of the optical
band. Since the NLS equation is defocusing at the upper edges

of the optical and acoustic bands, the NLS equation cannot be
used to approximate stationary bright breathers in the present
context.

Having identified focusing and defocusing parameter regimes,
we first investigate how well the focusing NLS equation approx-
imates moving bright breather solutions of the original system.
Provided that certain resonances are avoided, we find that the fo-
cusing NLS equation successfully approximates small-amplitude
optical bright breathers at various mass ratios and wave num-
bers. This very good correspondence is established by integrating
the lattice differential equation starting from the NLS approxima-
tion, which leads to robust motion of the bright breather over long
times.We also demonstrate that bright breathers can be generated
in the resonant granular chain initially at rest, and driven from a
boundary at a frequency within the focusing region of the optical
band (see [6,17] for related works). In addition, we analyze dis-
crepancies between numerical solutions and NLS approximations
which can be observed at some other wave numbers for the op-
tical branch and in the acoustic case. In particular, in some cases
we observe formation and robust propagation of nanoptera, bright
breathers that emit small-amplitude oscillations behind them.

Following the approach in [7], we also consider the defocus-
ing NLS at the edges of both optical and acoustic branches that
correspond to wave number equal to π , and use the solutions
of the modulation equation to construct the approximate stand-
ing dark breather solutions. A continuation procedure based on
a Newton-type method with initial conditions built from the ap-
proximation ansatz is employed to compute numerically exact
stationary dark breathers for a wide range of frequencies and at
different mass ratios. Interestingly, the resulting branches of solu-
tions also include large-amplitude dark breathers,whose dynamics
is strongly nonlinear.

We examine numerically the stability of the exact dark
breathers of both weakly and strongly nonlinear types, using both
a Floquet analysis and direct numerical simulations. Our results
suggest that small-amplitude weakly nonlinear dark breather
solutions with frequencies close to the linear frequencies of
the system are stable, in analogy to what was found for the
homogeneous granular chain in [7]. As the amplitude of the
dark breather solution becomes relatively large compared to the
amount of precompression, the solution starts to exhibit a very
strong modulational instability of the background, eventually
leading to its complete destruction and the emergence of chaotic
dynamics. However, when a real instability of the solution is
dominant in the Floquet spectrum, it may give rise to steady
propagation of a dark breather at large enough time. Interestingly,
we observe that such types of propagating dark breathers can also
form spontaneously, as a result of the instability of certain acoustic
periodic traveling waves. We also show that the mass ratio plays a
substantial role in oscillatory instabilities of the background of the
dark breathers. In contrast, the value of the mass ratio has a less
significant effect on real instabilitymodes for both the strongly and
weakly nonlinear solutions.

The paper is organized as follows. Section 2 introduces the
model, and the dispersion relation for plane waves is derived. In
Section 3 we derive the modulation equation of NLS type (with
more technical details included in the Appendix), recall basic
features of the focusing and defocusing regimes of NLS, and localize
these different regimes in the parameter space of the original
lattice. In Section 4 we investigate the existence of moving bright
breathers for the original system at different mass ratios and test
the validity of the NLS approximation. In Section 5 we analyze the
existence and stability of stationary dark breathers and discuss
the excitation of traveling dark breathers by different means.
Concluding remarks can be found in Section 6.
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