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h i g h l i g h t s

• Analysis for the NLS equation with a PT -symmetric potential is presented.
• A PT -Krein theory is developed for phase transition in this PT -symmetric system.
• Nonlinear dynamics near phase transition is derived analytically.
• Comparison with numerics shows good agreement.
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a b s t r a c t

Nonlinear wave propagation in parity-time symmetric localized potentials is investigated analytically
near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate
into the complex plane. Necessary conditions for a phase transition to occur are derived based on a
generalization of the Krein signature. Using the multi-scale perturbation analysis, a reduced nonlinear
ordinary differential equation (ODE) is derived for the amplitude of localized solutions near phase
transition. Above the phase transition, this ODE predicts a family of stable solitons not bifurcating from
linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-
oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts
unbounded growth of solutions. Below the phase transition, solution dynamics is predicted as well. All
analytical results are compared to direct computations of the full system and good agreement is observed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Parity-time (PT ) symmetric systems started out from an ob-
servation in non-Hermitian quantummechanics, where a complex
but PT -symmetric potential could possess all-real spectrum [1].
This concept later spread out to optics, Bose–Einstein condensa-
tion, mechanical systems, electric circuits and many other fields,
where a judicious balancing of gain and loss constitutes a PT -
symmetric systemwhich can admit all-real linear spectrum [2–16].
For example, in optics, an even refractive index profile together
with an odd gain–loss landscape yields aPT -symmetric system. A
common phenomenon in linear PT -symmetric systems is the ex-
istence of a phase transition (also known as PT -symmetry break-
ing), where pairs of real eigenvalues collide and then bifurcate to
the complex plane when the magnitude of gain and loss is above
a certain threshold [1,7,17–19]. This phase transition has been
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observed experimentally in a wide range of physical systems
[4–6,8,13,14]. When nonlinearity is present in PT systems, the
interplay between nonlinearity and PT symmetry gives rise to
additional novel properties such as the existence of continuous
families of stationary nonlinear modes, stabilization of nonlinear
modes above phase transition, and symmetry breaking of nonlin-
ear modes [7,18–28]. These findings reveal that PT -symmetric
systems break the boundary between traditional conservative and
dissipative systems and open new exciting research territories.
Practical applications of PT systems are emerging as well, such
as recent demonstrations of PT -symmetric micro-ring lasers and
unidirectional reflectionless PT metamaterials [12,15,16].

Phase transition is an important property of linear PT -
symmetric systems which is at the heart of many proposed appli-
cations [12,16,29]. At a phase transition, a pair of real eigenvalues
coalesce and form an exceptional point featuring a non-diagonal
Jordan block (i.e., the algebraic multiplicity of the eigenvalue is
higher than the geometric multiplicity). In the presence of nonlin-
earity (such as when the wave amplitude is not small), the inter-
play between the phase transition and nonlinearity is a fascinating
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subject. This interplay was previously studied for periodic PT -
symmetric potentials in [25,30,31], where novel behaviors such
as wave-blowup and temporally-oscillating bound states were re-
ported below phase transition. In addition, stable nonlinear Bloch
modes were reported above phase transition because nonlinear-
ity transforms the effective potential from above to below phase
transition [25] (a similar phenomenon was reported in [32] for a
different PT -symmetric dimer model). However, in periodic po-
tentials above phase transition, the presence of unstable infinitely
extended linearmodesmakes the zero backgroundunstable every-
where, which excludes the possibility of stable spatially-localized
coherent structures. In localized potentials, will the situation be
different?

In this article we study nonlinear wave behaviors in localized
PT -symmetric potentials near a phase transition. Unlike periodic
potentials, the instability of linear modes above phase transition is
limited to the area around the localized potential. In this case, the
addition of nonlinearity can balance against the effects of gain and
loss making stable spatially-localized coherent structures, such as
solitons and oscillating bound states, possible above phase tran-
sition. Mathematically, we explain this phenomenon by a multi-
scale perturbation analysis, where a reduced nonlinear ordinary
differential equation (ODE) is derived for the amplitude of local-
ized solutions near phase transition. Above phase transition, this
ODEmodel predicts a family of stable solitons not bifurcating from
linear (infinitesimal) modes under a certain sign of nonlinearity. In
addition, it predicts persistent oscillating nonlinear modes away
from solitons. Under the opposite sign of nonlinearity, it predicts
unbounded growth of solutions. Similarly, solution dynamics be-
low phase transition is predicted as well. All these predictions are
verified in the full partial differential equation (PDE) system. In
addition to these nonlinear dynamics, we also derive a necessary
condition for a phase transition to occur at an exceptional point in
the linear PT system by a generalization of the Krein signature,
namely, a phase transition from a collision of two real eigenval-
ues is possible only when the two eigenvalues have opposite PT -
Krein signatures.

2. Preliminaries

The mathematical model we consider in this article is the fol-
lowing potential NLS equation

iψz + ψxx + V (x; ϵ)ψ + σ |ψ |
2ψ = 0, (2.1)

where V (x; ϵ) is a PT -symmetric complex potential, i.e.,

V ∗(−x; ϵ) = V (x; ϵ), (2.2)

parameterized by ϵ, σ = ±1 is the sign of nonlinearity, and the
superscript * represents complex conjugation. Throughout the
text, we assume that the potential V (x; ϵ) is continuous with
ϵ. Eq. (2.1) governs nonlinear light propagation in an optical
medium with gain and loss [18] as well as the dynamics of
Bose–Einstein condensates in a double-well potential with atoms
injected into one well and removed from the other well [9,10].
PT -symmetric optical systems have been realized experimentally
[5,6,12,14–16], however PT -symmetric Bose–Einstein conden-
sates remain theoretical. Without loss of generality, we assume a
phase transition occurs at ϵ = 0,where a pair of real eigenvalues of
the potential coalesce and form an exceptional point, whose alge-
braic multiplicity is two and the geometric multiplicity is one. We
will analyze the solution dynamics in Eq. (2.1) near this exceptional
point, i.e., when |ϵ| ≪ 1.

The analysis to be developed applies to all localized PT -
symmetric potentials near a phase transition. To illustrate these
analytical results and compare them with direct numerics of the

full model (2.1), we will use a concrete example—the so-called
Scarff II potential

V = VR sech2(x)+ iW0 sech(x) tanh(x), (2.3)

where VR and W0 are real parameters. For this potential, phase
transition occurs at W0 = VR + 1/4 [17], and solitons as well as
robust oscillating solutions have been reported numerically below
phase transition in [18,33–35].

3. PT -Krein signature and a necessary condition for phase
transition

For the potential NLS equation (2.1), when one looks for linear
eigenmodesψ = u(x)e−iµz , with regards to the stability of the zero
state, the eigenvalue problem

L(x; ϵ)u = −µu (3.1)

will be obtained, where

L = ∂xx + V (x; ϵ) (3.2)

is a Schrödinger operator with a complex PT -symmetric po-
tential, and µ is an eigenvalue. We wish to consider the phase-
transition process bywhich the spectrumof L changes from all-real
to partially-complex. This phase transition occurs when a pair of
real eigenvalues collide, forming an exceptional point, and then bi-
furcate into the complex plane. It is important to recognize that not
any two real eigenvalues can turn complex upon collision. This is
analogous to the linear stability of equilibria in Hamiltonian sys-
tems, where not just any two purely imaginary eigenvalues upon
collision can bifurcate off the imaginary axis and result in linear
instability [36–39]. With this in mind, we consider the question:
under what conditions can a pair of real eigenvalues of L induce a
phase transition upon collision?

We will work in the square-integrable doubly-differentiable
Hilbert functional space H2 endowed with the standard inner
product

⟨f , g⟩ =


∞

−∞

f ∗(x)g(x) dx.

Under this inner product, the adjoint operator LĎ of L is

LĎ = L∗
= ∂xx + V ∗(x; ϵ).

When the potential V (x) is PT -symmetric, a key property of the
operator L, which can be readily verified, is

LĎ = P L P −1, (3.3)

where P is the parity operator, i.e., Pf (x) ≡ f (−x). For this parity
operator, P −1

= P and P Ď
= P , thus P is Hermitian and invert-

ible. Consequently, L is pseudo-Hermitian [40] and P L is Hermi-
tian.

One of the consequences of the pseudo-Hermiticity of L is
that, any complex eigenvalues of L must come in conjugate pairs
(µ,µ∗). The reason is that under pseudo-Hermiticity, LĎ is similar
to L, thus LĎ and L share the same spectrum. But the spectrum of LĎ
is the complex conjugate of L’s, thus complex eigenvalues of Lmust
come in (µ,µ∗) pairs.

Another consequence of the pseudo-Hermiticity of L is that,
it allows us to define a PT -Krein signature for discrete real
eigenvalues of L, which will prove to be important when studying
phase transition from collisions of L’s real eigenvalues. For this
purpose, we endow the Hilbert space H2 with another indefinite
PT inner product [41]

⟨f , g⟩PT ≡ ⟨f ,P g⟩ =


∞

−∞

f ∗(x)g(−x) dx. (3.4)
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