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h i g h l i g h t s

• Pipe Poiseuille flow of a second grade fluid is considered.
• Energy and linear stability thresholds for the Reynolds number are found.
• Possible transition scenarios are continuous or catastrophic.
• For small second order viscous effects, the preferred transition is catastrophic.
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a b s t r a c t

In this study we consider the stability and transitions for the Poiseuille flow of a second grade fluid which
is a model for non-Newtonian fluids. We restrict our attention to perturbation flows in an infinite pipe
with circular cross section that are independent of the axial coordinate.

We show that unlike the Newtonian (ϵ = 0) case, in the second grade model (ϵ > 0 case), the
time independent base flow exhibits transitions as the Reynolds number R exceeds the critical threshold
Rc = 8.505ϵ−1/2 where ϵ is a material constant measuring the relative strength of second order viscous
effects compared to inertial effects.

At R = Rc , we find that the transition is either continuous or catastrophic and a small amplitude, time
periodic flowwith 3-fold azimuthal symmetry bifurcates. The time period of the bifurcated solution tends
to infinity as R tends to Rc . Our numerical calculations suggest that for low ϵ values, the system prefers a
catastrophic transition where the bifurcation is subcritical.

We also show that there is a Reynolds number RE with RE < Rc such that for R < RE , the base flow is
globally stable and attracts any initial disturbance with at least exponential speed. We show that the gap
between RE and Rc vanishes quickly as ϵ increases.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Certain natural materials manifest some fluid characteristics
that cannot be represented by well-known linear viscous fluid
models. Such fluids are generally called non-Newtonian fluids.
There are several models that have been proposed to predict the
non-Newtonian behavior of various type of materials. One class
of fluids which has gained considerable attention in recent years
is the fluids of grade n [1–7]. A great deal of information of these
types of fluids can be found in [8]. Among these fluids, one special
subclass associated with second order truncations is the so called
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second-grade fluids. The constitutive equation of a second grade
fluid is given by the following relation for incompressible fluids

t = −pI + µA1 + α1A2 + α2A2
1,

where t is the stress tensor, p is the pressure, µ is the classical
viscosity, α1 and α2 are the material coefficients. A1 and A2 are the
first two Rivlin–Ericksen tensors defined by

A1 = ∇v + ∇vT ,

A2 = Ȧ1 + A1∇v + ∇vTA1,

where v is the velocity field and the overdot represents the
material derivative with respect to time. This type of constitutive
relation was first proposed in [9]. The conditions

α1 + α2 = 0, µ ≥ 0, α1 ≥ 0,
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must be satisfied for the second-grade fluid to be entirely
consistent with classical thermodynamics and the free energy
function achieves its minimum in equilibrium [10].

Equation of motion for an incompressible second grade
Rivlin–Ericksen fluid is represented as

ρ


vt + w × v + ∇

|v|2

2


= −∇p + µ1v + α


1vt +1w × v

+ ∇


v ·1v +

1
4
|A1|

2

,

∇ · v = 0

where ρ is the density, α = α1 = −α2, represents the second
order material constant. Subscript t denotes the partial derivative
with respect to time,w is the usual vorticity vector defined by

w = ∇ × v.

We next define the non-dimensional variables

v∗
=

v
U
, p∗

=
p
ρU2

, t∗ =
tU
L
, x∗

=
x
L
,

where U and L are characteristic velocity and length, respectively.
By letting ϵ represent the second order non-dimensional material
constant which measures the relative strength of second order
viscous effects compared to inertial effects and defining the
Reynolds number,

R =
ρUL
µ
, ϵ =

α

ρL2
,

the equation of motion, with asterisks omitted, can be expressed
as

∇p̄ =
1
R
1v + ϵ(1w × v +1vt)− vt − w × v, (1)

where the characteristic pressure p̄ is defined as

p̄ = p +
|v|2

2
− ϵ


v1v +

1
4
|A1|

2

.

Taking curl of both sides of (1) we can simply write the equation of
motion as

∇ ×


1
R
1v + ϵ(1w × v +1vt)− vt − w × v


= 0, (2)

which is the field equation of incompressible unsteady second
grade Rivlin–Ericksen fluid independent of the choice of any
particular coordinate system.

Now we restrict our interest to flows in an infinite cylinder
with circular cross section and consider the no-slip boundary
conditions. If we choose the characteristic length L to be the radius
of the tube, then Eqs. (2) admit the following steady state solution,
known as the pipe Poiseuille flow,

v0 =


0, 0,

P0R
4
(1 − x2 − y2)


,

corresponding to a steady pressure p0. Here the constant P0 =

−
∂p0
∂z is the nondimensional axial pressure gradient. By recalling

the definition of nondimensional pressure, we observe that the
dimensional axial pressure gradient is given by P0 =

ρU2P0
L . Now if

we choose the characteristic velocity as U =
P0L2

4µ , the steady state
solution becomes

v0 = (0, 0, 1 − x2 − y2).

Now we consider perturbations v′(x, y, t) = v − v0 from this
basic flow which depend only on the two cross-sectional variables

x, y and the time t . Introducing the polar coordinates v′′(t, r, θ) =

v′(t, r cos θ, r sin θ), introducing a stream function ψ such that
v = (ψy,−ψx, w) and ignoring the primes, the equations become

∂

∂t
(1 − ϵ∆)w =

1
R
1w + 2ψθ + J(ψ, (1 − ϵ∆)w),

∂

∂t
∆(ϵ∆− 1)ψ = −

1
R
∆2ψ + 2ϵ1wθ + J((1 − ϵ∆)1ψ,ψ)

+ ϵJ(1w,w),

(3)

in the interior of the unit diskΩ where J is the advection operator

J(f , g) =
1
r
(frgθ − fθgr).

The field equations are supplemented with no-slip boundary
conditions for the velocity field

w = ψ =
∂ψ

∂r
= 0 at r = 1. (4)

In this paper, our main aim is to investigate the stability and
transitions of (3) subject to (4).We first prove that unlike the New-
tonian case (ϵ = 0), in the non-Newtonian case (ϵ > 0), the system
undergoes a dynamic transition at the critical Reynolds number
Rc = 8.505ϵ−1/2. As R crosses Rc the steady flow loses its stability,
and a transition occurs. If we denote the azimuthal wavenumber
of an eigenmode bym, then twomodes, called critical modes here-
after, with m = 3 and radial wavenumber 1, become critical at
R = Rc .

Recently, the dynamic transition theory has gained much at-
tention. We refer the readers to [11] for the details of this the-
ory, and [12–19] for several recent applications. Using the language
of dynamic transition theory, we can show that the transition at
R = Rc is either Type-I (continuous) or Type-II (catastrophic).
In Type-I transitions, the amplitudes of the transition states stay
close to the base flow after the transition. Type-II transitions, on
the other hand, are associated with more complex dynamical be-
havior, leading to metastable states and local attractors far away
from the base flow.

We show that the type of transition at R = Rc preferred for this
problem is determined by a complex parameter A given by (28)
which only depends on ϵ. In the generic case of nonzero real part of
A, there are twopossible transition scenarios depending on the sign
of the real part ofA: Type-I (continuous) transition if Re(A) < 0 and
Type-II (catastrophic) transition if Re(A) > 0.

In the continuous transition scenario (Re(A) < 0 case), a stable,
small amplitude, time periodic flowwith 3-fold azimuthal symme-
try bifurcates on R > Rc . The time period of the bifurcated solution
tends to infinity as R tends to Rc , a phenomenon known as infi-
nite period bifurcation [20]. The dual scenario is the catastrophic
transition (Re(A) > 0 case) where the bifurcation is subcritical on
R < Rc and a repeller bifurcates.

The transition number A depends on the system parameter ϵ in
a non-trivial way, and it is not possible to find an explicit expres-
sion of A as a function of ϵ. So, A must be computed numerically
for a given ϵ. Physically, the transition number A can be consid-
ered as a measure of net mechanical energy transferred from all
modes back to the critical modes which in turn modify the base
flow. We show that A is determined by the nonlinear interactions
of the critical modes (m = 3) with all the modes having azimuthal
wavenumberm = 0 andm = 6. Moreover, our numerical compu-
tations suggest that for low ϵ fluids (ϵ < 1), just a single nonlinear
interaction, namely the one with m = 0 and radial wavenumber
1 mode, dominates all the rest contributions to A. Our numerical
experiments with low ϵ, i.e. ϵ < 1, suggest that the real part of A
is always positive indicating a catastrophic transition on R > Rc .

We also determine the Reynolds number threshold RE > 0
below which the Poiseuille flow is globally stable, attracting all
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