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a b s t r a c t

Using a sensitive statistical test we determine whether or not one can detect the breakdown of linear re-
sponse given observations of deterministic dynamical systems. A goodness-of-fit statistics is developed
for a linear statistical model of the observations, based on results for central limit theorems for determin-
istic dynamical systems, and used to detect linear response breakdown. We apply the method to discrete
maps which do not obey linear response and show that the successful detection of breakdown depends
on the length of the time series, the magnitude of the perturbation and on the choice of the observable.

We find that in order to reliably reject the assumption of linear response for typical observables
sufficiently large data sets are needed. Even for simple systems such as the logistic map, one needs of
the order of 106 observations to reliably detect the breakdown with a confidence level of 95%; if less
observations are available one may be falsely led to conclude that linear response theory is valid. The
amount of data required is larger the smaller the applied perturbation. For judiciously chosen observables
the necessary amount of data can be drastically reduced, but requires detailed a priori knowledge about
the invariant measure which is typically not available for complex dynamical systems.

Furthermore we explore the use of the fluctuation–dissipation theorem (FDT) in cases with limited
data length or coarse-graining of observations. The FDT, if applied naively to a system without linear
response, is shown to be very sensitive to the details of the sampling method, resulting in erroneous
predictions of the response.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An important question in the study of probabilistic properties of
dynamical systems is how to determine the response of a system if
subjected to a small perturbation. For example, in climate science
we would like to know how the global mean temperature changes
upon increasing CO2 levels. This problem was solved in statistical
physics in the context of thermostatted Hamiltonian systems,
establishing the framework of linear response theory [1–4]. In
essence, linear response theory employs a Taylor expansion of the
perturbed invariant measure around the unperturbed equilibrium
measure; with a manipulation of terms in this expansion one may
then approximate averages of observables in the perturbed system
entirely from knowledge of the statistics of the unperturbed
system.
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The study of linear response involves two issues: proving
differentiability of the response and finding an expression for
the derivative of the response. To establish linear response, the
invariant measure needs to be differentiable with respect to the
parameter describing the magnitude of the perturbation. For the
existence of an analytical formula for the response in terms of the
equilibrium fluctuations of the unperturbed system, which is the
statement of the celebrated fluctuation–dissipation theorem (FDT),
the invariant measure needs additionally to be differentiable with
respect to the phase space variables.

Applying this framework to deterministic dynamical systems,
in particular to forced dissipative systemswhose dynamics evolves
on an attractor of zero Lebesgue measure in the full space, has
been a challenge. In a series of papers, Ruelle showed that the
response is linear for the class of uniformly hyperbolic Axiom A
systems, i.e. the invariant measure is differentiable with respect to
the magnitude of the perturbation [5–8].

Due to the singular nature of the invariant measure of forced
dissipative systems the fluctuation–dissipation theorem, however,
cannot hold. Heuristically this failure can be understood by
realizing that typical perturbationswill have a non-zero projection

http://dx.doi.org/10.1016/j.physd.2016.05.010
0167-2789/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physd.2016.05.010
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2016.05.010&domain=pdf
mailto:georg.gottwald@sydney.edu.au
mailto:jpwormell@gmail.com
mailto:jeroen.wouters@uni-hamburg.de
http://dx.doi.org/10.1016/j.physd.2016.05.010


90 G.A. Gottwald et al. / Physica D 331 (2016) 89–101

along the stable manifold, generally transverse to the attractor,
whereas the invariant measure is supported entirely on the
attractor. Therefore one cannot estimate the response by solely
considering correlations of the unperturbed system. A linear
response formula can still be expressed, but involves the full
linear tangent dynamics and must take into account the evolution
of exponentially attenuated perturbations along stable directions
rather than just the unperturbed fluctuations along the unstable
manifolds as in the FDT.

The hope that linear response theory can be extended to
more general chaotic dynamical systems has been dampened by
numerical results on the tent map [9] and rigorous analysis by
Baladi and co-workers [10–14]. In particular, it was shown that the
logistic map does not obey linear response. This is due to the non-
smooth changes of the invariant measure when perturbing from
a chaotic parameter value to a periodic one or vice versa. Even
worse, evenwhen restricting to the Cantor set of chaotic parameter
values the measure is not differentiable in the sense of Whitney.
On the other hand, there are numerical simulations suggesting
that linear response might exist for some examples of non-
uniformly hyperbolic systems [15–17] including the Lorenz ’63
system which involves homoclinic tangencies. Furthermore, the
lack of structural stability, whichwas believed to be an obstruction
to linear response theory in the climate system [18], does not
preclude the existence of linear response as was rigorously shown
in [19]. The current belief in the mathematical community is that
a sufficient condition for the existence of linear response is the
summability of the correlation function; the summability of the
correlation function is, however, shown not to be necessary for
general observables [20,21].

Notwithstanding the lack of rigorous mathematical proofs for
its validity for general forced dissipative non-equilibrium systems,
linear response theory has been taken up in the climate sciences
to predict the response of the climate, as was first proposed by
Leith [22]. Linear response theory and the fluctuation–dissipation
theorem have since been used with some success by several
groups. They have been applied to various toy models related
to atmospheric chaos [23,17,24–27], barotropic models [28–
30], quasi-geostrophic models [31], atmospheric models [32–38]
and coupled climate models [39–42]. These successes have led
scientists to believe that high-dimensional complex systems may
very well obey linear response. The standard argument is that
complex systems involve a multitude of interacting processes
on several temporal and spatial scales and behave effectively
stochastically with a smooth invariant measure [23]. This point
of view seems at least reasonable for observables of the slow
dynamics of complex multi-scale systems which in the limit of
infinite time-scale separation are asymptotically stochastic [43–
45]. In the case of stochastic dynamical systems linear response
theory can indeed be justified [46,47]. However, several instances
are now knownwhere atmospheric and oceanic dynamics exhibits
a rough dependence on parameters [48], and where, even if linear
response theory is observed, the fluctuation–dissipation theorem
is not valid [49].

On a more fundamental level, however, it is by no means clear
that high-dimensional complex systems do obey linear response
theory. In this paper we do not attempt to answer this question.
Rather, we consider the following practical issue: systems which
do not obey linear response theory are observed with finite time
series. In such cases we seek to show that the breakdown might
not be detectable, and the system’s observed behavior may appear
consistent with linear response theory. Moreover, the choice of
the observable is crucial for the detectability of the breakdown of
linear response in finite time series. In particular, we will show
that global observables are less able to detect the non-smoothness
of the invariant measure whereas local observables which hone

in on the roughness of the invariant measure will make the non-
smoothness apparent for smaller amounts of data. Finally, the
perturbation size also impacts on the detectability of breakdown,
with smaller perturbations requiring more data for successful
breakdown detection.

This work is motivated by the contradiction between the re-
ported success of linear response theory in the climate sciences and
rigorous mathematical results proving the non-existence of linear
response theory for a large class of dynamical systems.

The paper is organized as follows. In Section 2we briefly review
linear response theory and the fluctuation–dissipation theorem. In
Section 3we propose a goodness-of-fit test to probe for the validity
of linear response in time series. In Section 4we discuss the logistic
map, demonstrate the mechanism leading to the breakdown of
linear response for this one-dimensional map and show how this
breakdown might not be apparent with time series of insufficient
length. We show the effect of finite data size as well as how
the choice of the observable can either mask or emphasize the
non-smoothness of the invariant measure. In Section 6 we show
further that in situations where linear response does not exist,
an application of the FDT cannot provide any reliable statistical
information, not even in an averaged sense. We conclude with a
summary in Section 7.

2. Linear response theory

We consider here a family of dynamical systems fε : M → M
on some space M . We assume that the map fε depends smoothly
on the parameter ε and that for each ε the dynamical systems
admit a unique invariant physical measure µε , e.g. absolutely
continuous measures or Sinai–Ruelle–Bowen measures (SRB). An
ergodic measure is called physical if for a set of initial conditions
of nonzero Lebesgue measure the temporal average of a typical
observable converges to the spatial average over this measure.
Considering an observable A : M → R, we are interested in the
change of the average of the observable

⟨A⟩ε =


M
A dµε

uponvarying ε. A system is said to have linear response if the deriva-
tive

⟨A⟩
′

ε0
:=

∂

∂ε
⟨A⟩ε|ε0

exists. It is obvious that a sufficient condition for linear response
is that the invariant measure µε is differentiable with respect to
ε. If the limit does not exist, we say there is a breakdown of linear
response. We assume that the observable captures sufficient dy-
namic information about the dynamical system; for example, an
odd observable on a system symmetric about 0 would be identi-
cally zero regardless of whether the system had a linear response
or not.

One may further ask whether, if linear response exists, a com-
putable analytical expression for the linear response

⟨A⟩ε ≈ ⟨A⟩ε0 + ⟨A⟩
′

ε0
δε (1)

can be found for small values of δε = ε − ε0. To write down an
expression of the linear response, we introduce a vector field X as
X ◦ fε0 := ∂εfε|ε=ε0 . Note that the introduction of the vector field
X is the standard way of formulating perturbations in statistical
physics as fε = fε0 + δεX(fε0). The linear response ⟨A⟩

′
ε0

can then
be formally expressed as

∂

∂ε
⟨A⟩ε|ε0 =

∞
n=0

⟨X(x)∇(A ◦ f nε0)(x)⟩ε0 , (2)
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