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h i g h l i g h t s

• A simple but general model for cell crawling is derived from symmetry consideration.
• We apply the so-called coherence resonance to generate the time-dependent forces.
• The nonlinear coupling among deformations affects drastically the crawling behavior.
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a b s t r a c t

Based on symmetry consideration of migration and shape deformations, we formulate phenomenologi-
cally the dynamics of cell crawling in two dimensions. Forces are introduced to change the cell shape. The
shape deformations induce migration of the cell on a substrate. For time-independent forces we show
that not only a stationary motion but also a limit cycle oscillation of the migration velocity and the shape
occurs as a result of nonlinear coupling between different deformation modes. Time-dependent forces
are generated in a stochastic manner by utilizing the so-called coherence resonance of an excitable sys-
tem. The present coarse-grainedmodel has a flexibility that it can be applied, e.g., both to keratocyte cells
and to Dictyostelium cells, which exhibit quite different dynamics from each other. The key factors for the
motile behavior inherent in each cell type are identified in our model.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Eukaryotic cell crawling has attracted much attention recently
from the view point of nonlinear science and non-equilibrium
statistical physics. One of the characteristic features is that
the symmetry is spontaneously broken to cause the front-rear
asymmetry when the cell migrates in contrast to bacterias which
swim by rotary motion of flagella and hence are inherently
asymmetric. The dynamics of eukaryotic cells involves the
mechanical forces between cell membrane and substrate, and
biochemical reaction of active molecules inside a cell.

Study of cell crawling on substrates has began rather recently
compared to that of swimming bacterias. The latter has a long
history of hydrodynamical approach in the limit of low Reynolds
number [1–4]. Shape deformation of crawling keratocyte cells has
been analyzed experimentally [5]. Classification of morphology of
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motile cells, correlations between shape deformation and migra-
tion of Dictyostelium cells and other living cells have also been in-
vestigated [6–9]. Recent advanced experimental techniques have
enabled us to measure the spatial distribution of traction forces
exerted by a migrating cell on substrates [10–13] and the concen-
tration distribution of active molecules which involve cell motil-
ity [14].

Plasma membrane protrusion caused by actin polymerization
in the cell interior is the essential mechanism of cell crawling. In
the early 1990s, DiMilla et al. investigated persistent migration
of tissue cells such as fibroblasts by a mathematical model which
is essentially one-dimensional and incorporates cytoskeletal force
generation, cell polarization, and dynamic adhesion [15]. Theoret-
ical studies of cell crawling taking into account shape deforma-
tions have started recently. Modeling of cell crawling employing
reaction–diffusion mechanism inside a cell or on a cell boundary
and the interaction between the chemical components and the cell
membrane has been proposed in two dimensions [16–18]. A phase
field model for cell shape coupled with the polarization field of
actin filaments has also been proposed for the cell motility. The
crawling dynamics of keratocyte cells including oscillatory straight
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motion and bipedal motion [19] has been investigated by taking
account of the density of adhesion bonds and traction forces [20,
21]. A similar model in terms of the phase field has been studied in
which the reaction–diffusion dynamics inside a Dictyostelium cell
is assumed to be excitable and therefore this model is capable of
investigating non-stationary motion [14]. Modeling of amoeboidal
cell crawling has also been formulated by an oscillatory dynam-
ics [22] where irregularity appears as spatio-temporal chaos [23].
These are models in two dimensions. In a slightly different ap-
proach, theory of active gels has been applied to stationary amoeba
motion in one dimension to make a connection between the mi-
gration velocity and the distribution of active stress or myosin
molecules [24,25]. Motility of active droplets in which active stress
is generated has been studied numerically both in two and three
dimensions to show that a bifurcation from a motionless state to
a migrating state with shape deformations occurs due to sponta-
neous symmetry breaking of the polarity inversion in the absence
of treadmilling [26].

It is mentioned briefly that there is another mechanism of
cell motility due to plasma membrane blebbing [27]. This is
not restricted to migration on substrate. Blebbing is initiated
by local disruption of membrane-action cortex and internal
hydrostatic pressure. It is of importance to note that actin
polymerization is not involved in the initial bleb expansion. Cell
motility by blebbing in three-dimensional environments has been
investigated theoretically [28].

In the present paper, we study cell crawling under a homo-
geneous environment based on a phenomenological model in
terms of migration velocity and shape deformations. A set of time-
evolution equations is derived based on symmetry consideration
in the same spirit as the derivation of equations for deformable
self-propelled particles [29,30]. To make shape deformations, we
introduce forceswhich act on the cell perimeter.We consider time-
independent and time-dependent forces separately. The case of
constant forces is regarded as a model of coherent motions, e.g., of
keratocyte cells whereas the time-dependent forces are applied to
motility of Dictyostelium cells. In the experiments of Dictyostelium
cells, morphological change occurs repeatedly but it is not pre-
cisely periodic. To realize this behavior, we utilize the so-called
coherence resonance which generates spike excitation of chemi-
cal components repeatedly in an excitable system when noise is
added appropriately [31].

All the previous models mentioned above are constructed
to apply to a specific system such as fish keratocyte cells
and Dictyostelium cells. A steadily migrating keratocyte cell is
elongated perpendicularly to the velocity direction [5] whereas a
Dictyostelium cell in a starved condition has a tendency to elongate
parallel to the migration direction [8]. Our model, though simple,
has an advantageous feature that it is applicable to non-stationary
motion of a crawling cell with general shape deformations by
choosing appropriately the parameters.

One of the basic assumptions of ourmodel in terms of the center
of mass and the cell boundary is that all other degrees of freedom
involving migration relax rapidly. If this is not the case, we need to
add other relevant degrees of freedom as dynamical variables.

In the next section (Section 2) we start with description of our
model system. The case of constant forces is analyzed in Section 3
where we obtain limit cycle oscillations of migration velocity and
shape deformations. This is compared with the phase field model
of keratocyte cells. Numerical results for the time-dependent
forces are shown in Section 4 and are compared qualitatively
with the motions of Dictyostelium cells. Discussion is given in
Section 5.

2. Model for cell crawling

We introduce the model of cell crawling in two dimensions in
terms of the velocity of the center of mass vi, and the deformation
tensors

vk = γ SijUijk, (1)

dSij
dt

= −κ2Sij + b0


vivj −

δij

2
vkvk


+ F (2)

ij (t), (2)

dUijk

dt
= −κ3Uijk + d0[vivjvk

−
vnvn

4
(δijvk + δjkvi + δkivj)] + F (3)

ijk (t), (3)

where the repeated indices imply summation.
The tensors Sij and Uijk are defined as follows. Deformations of

a cell around a circular shape with radius R0 are written as

R(φ, t) = R0(1 + δR(φ, t)), (4)

where

δR(φ, t) =

∞
n=−∞

cn(t)einφ . (5)

Since uniform expansion and contraction of a circular cell are
prohibited and the translational motion of the cell has been
incorporated in the variable vk, the modes c0 and c±1 should be
removed from the Fourier series (5). The deformation tensors are
given in terms of the Fourier coefficients by [32]

S11 = c2 + c−2 = 2a2 cos 2θ2, (6)

S12 = S21 = i(c2 − c−2) = 2a2 sin 2θ2, (7)
S22 = −S11, (8)
U111 = −U122 = −U212 = −U221 ≡ W+, (9)
U222 = −U112 = −U121 = −U211 ≡ −W−, (10)

where

W+ = c3 + c−3 = 2a3 cos 3θ3, (11)

W− = i(c3 − c−3) = 2a3 sin 3θ3, (12)

with positive a2 and a3.
The coefficients κ2 and κ3 are positive while the sign of γ in

Eq. (1) will be fixed later. Here, for simplicity, we ignore other
nonlinear couplings such as Uijkvk and Sijvk + Sjkvi + Skivj −

(vn/2)(δijSkn + δjkSin + δkiSjn) [29] but consider the coupling only
with the velocity as Eqs. (2) and (3) since those terms are expected
to be mostly relevant to the correlation between the elongation
direction and the migration direction as shown below.

Eq. (1) implies that there is no inertia term and that the cell
does not migrate if it is circular since we consider a deformation-
induced migration. In our previous studies of migration-induced
deformations [32,33], equation ofmotion of the center ofmasswas
derived, which takes the following form

dvk

dt
= κ1vk − g(vi)

2vk + aSkjvj + γ ′SijUijk, (13)

where κ1, g(> 0), a and γ ′ are constants. Eq. (1) is a special case of
Eq. (13). In fact, when κ1 is negative, that is, migration is passive,
onemay ignore the g-termand in the limit of |κ1| ≫ 1, the solution
of Eq. (13) is given by

vk = −γ ′
[κ1 + aS]−1

kℓ SijUijℓ ≈ −
γ ′

κ1
SijUijk. (14)

It is also noted here that the deformation-induced migration in
the form of Eq. (1) has been introduced in a different context
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