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HIGHLIGHTS

e Reaction-diffusion-advection model for the formation of spatially localized molecular-motor aggregates (pulses).
e Analytic trends of pulses properties via model parameters: shape and propagation velocity.
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Unconventional myosins belong to a class of molecular motors that walk processively inside cellular
protrusions towards the tips, on top of actin filament. Surprisingly, in addition, they also form retrograde
moving self-organized aggregates. The qualitative properties of these aggregates are recapitulated by a
mass conserving reaction-diffusion-advection model and admit two distinct families of modes: traveling
waves and pulse trains. Unlike the traveling waves that are generated by a linear instability, pulses are

nonlinear structures that propagate on top of linearly stable uniform backgrounds. Asymptotic analysis
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of isolated pulses via a simplified reaction-diffusion-advection variant on large periodic domains, allows
to draw qualitative trends for pulse properties, such as the amplitude, width, and propagation speed. The
results agree well with numerical integrations and are related to available empirical observations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Molecular motors facilitate a mean of transport within cells, and
are especially vital to chemical exchange in actin-based cellular
protrusions [1], such as filopodia [2] and stereocilia [3]. Unconven-
tional myosins (UM), constitute arguably the most important fam-
ily of processive motors, moving and transporting chemical cargos
to and from the plus-ends (growing tips) of actin-filaments; except
for myosin-VI which is a minus-end directed motor. Thus, dynam-
ical properties of UM are central to cell functionalities, example of
which include migration, morphology, communication and mor-
phogenesis [4,5].

Despite the tendency of UM to accumulate at the protrusion
tips, where the plus ends of the actin filaments are located, there
are many observations of retrograde motion of aggregates towards
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the protrusion base. These self-organized aggregates are common
to both filopodia and stereocilia and are associated with myosin-
X [6-9], myosin-XV [10], myosin-III [11] and myosin-Va [8]. The
qualitative mechanisms of these motor aggregates can be captured
through a continuum reaction-diffusion-advection model that
constitutes three basic types of motors [12]: freely diffusing, actin-
bound stalled motors advected by the retrograde flow of actin
towards the protrusion base, and actin-bound processive motors
that walk towards the tip. In particular, the model allows to
distinguish between two transport modes: traveling waves and
pulse trains.

Here we aim to develop a better understanding of isolated
pulses, by further simplification of the original model through
which only two motor types are considered: processive and stalled.
Using asymptotic analysis in a co-moving coordinate frame, we
derive trends for the amplitude, velocity and width of the pulses.
We show that these analytically derived forms agree well with di-
rect numerical integrations and also with pulses obtained in the
original model, i.e., a model that includes also freely diffusing mo-
tors [12]. Finally, we confront the obtained results with experi-
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mentally observed features and make suggestions for future ex-
periments.

2. Reaction-diffusion-advection framework for self-

organization of molecular motors

Self-organization of molecular motors inside a cellular protru-
sion can be described by an effective one-dimensional projection
of the emergent dynamics since the protrusions are usually thin
compared to their length. The equations of motion then qualita-
tively incorporate continuum transport and interactions between
three forms of the molecular motors [12]:

e my, motors which are not physically connected to actin
filaments and thus freely diffuse with diffusion coefficient D. If
the diffusion is very fast D > vph (where v, is the retrograde
speed of the actin and h is the length of the protrusion), or in an
unbounded volume, it acts to diminish and eventually abolish
the pulses [12].

e my, stalled motors that are physically anchored to the actin
filaments and are transported towards the cell (protrusion base)
with roughly the treadmilling velocity of the actin filaments vp.
However even if stalled, these motors can still exhibit random
forward and backward steps [8] which result in a small effective
diffusion (Dy) along the actin filaments [13], i.e. D,/D < 1.
Such stalled movements of motors could arise when motors
lose their cargo, or enter a self-inhibiting conformation [14,15].

e m,,, processive motors that are only walking against the actin
polymerization towards the protrusion tip with velocity v,, —
Uy ([vp/vw] > 1).

The equations of motion read as [12]:
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where the respective linear operators correspond to on/off
transition rates between the free, stalled, processive motors and
due to mass conservation of the motors £ + £ + £, = 0. The
nonlinear reactions are related only to motors that propagate along
the actin filaments since only these motors can create aggregates
bearing a similarity to formation of traffic jams [15]. The local
reaction terms in the three-state motor model and the fluxes in
(1) are respectively, given by:
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where ky,, is a nonlinear transition rate and k';’f , kg’f , kg’f are first
order on/off transition rates, respectively. Briefly, the model (1)
describes an effective one-dimensional projection of the emergent
dynamics along the actin bundle comprising the core of the cellular
protrusion. Since the protrusions are usually thin compared to
their length, we ignore variations within the cross-section of
the protrusion. Furthermore, for simplicity we ignore dynamical
variations in the length h of the protrusion. This is reasonable since
many filopodia are observed to be stable on a time-scale that is
long compared to the frequency of formation of retrograde motor
aggregates [12], as filopodia are often stabilized by adhesion to
the external substrate. In addition, we treat the retrograde flow of
the actin filaments v, as constant. This flow is driven by the actin
polymerization at the protrusion tip, and by the pull of myosin-
Il motors inside the cell cytoplasm. While the processive motors
inside the protrusion could also contribute to this flow, these
corrections are neglected in this model.

Eqs. (1) are supplemented with boundary conditions (BCs) that
reflect realistic properties of motors [12]:

e At the protrusion base z = 0, [my,Jp,Ju| = [mf, —vpmy,
(vy — vb)mw], where the concentration of free (and actin-
bound) motors is usually very low, i.e., m}’ — 0;

e At the protrusion tip z = h, since the protrusion is closed there
must be an overall zero flux condition which imposes a con-
version rate according to J, = —fJ,,Jf = —(1 — )], where
0 < B < 1.Here B = 1 corresponds to pure transition between
the counter propagating subsets m,, — m, (processive motors
stall at the tip, Fig. 1(b)), while 8 = 0 denotes a pure transi-
tion to freely diffusing m,, — my (processive motors fall-off
the actin bundle at the tip, Fig. 1(a)).

Unlike standard reaction-diffusion systems, mass conservation
in the bulk introduces multiplicity of uniform states for which
one of the fields, for example m; can be considered as an
additional control parameter. In a companion paper [12], we have
demonstrated that pattern selection to traveling waves and pulse
trains arise from BCs: for 8 — 0 (Fig. 1(a)), and for small
(realistic) values of my, the uniform states are linearly stable but
the accumulation of motors at the tip arise in pulse trains, while the
emergence of traveling waves (8 — 1) arise through a finite wave-
number instability (Fig. 1(b)), cf. [16]. The pulses are excitable
pulses (dissipative solitons) which correspond to homoclinic orbits
in the co-moving reference frame [17]. In this paper we focus on
their qualitative core properties.

3. Isolated pulses

For isolated pulses, we require linear stability of uniform states
by assuming my — 0 and my <« my, m,, which also keeps
fidelity to biology of motors inside the protrusion, i.e., UM usually
have a high affinity to the actin filaments, so that the fraction of
motors in the freely diffusing state is relatively small [8]. Since
the equation of motion for my is linear, it is therefore enslaved
to the nonlinear behavior of m, and m,,. Moreover, the minimal
requirement for homoclinic orbits in reaction-diffusion systems
is a two variable system with differential advection and at least
a single diffusing term [17,18], i.e., the role played by the third
specie, the freely diffusing state, is negligible from the qualitative
point of view. It is therefore, useful to study a simpler version of
the model comprising only the processive and stalled species. In
what follows, we demonstrate that the simplified model contains
not only the ability to sustain propagating pulses, similar to the full
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