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h i g h l i g h t s

• Wemodel the dynamics of microtubules in gliding assays.
• We explain the circular and wavy trajectories observed experimentally.
• We show that they are due to the helical nature of microtubules.
• Circular and wavy trajectories alternate as a function of filament length.
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a b s t r a c t

We study the dynamics of microtubules in gliding assays. These biofilaments are typically considered as
purely semiflexible, hence their trajectories under the action of motors covering the substrate have been
regarded so far as straight, modulo fluctuations. However, this is not always the case experimentally,
where microtubules are known to move on large scale circles or spirals, or even display quite regular
wavy trajectories and more complex dynamics. Incorporating recent experimental evidence for a (small)
preferred curvature as well as the microtubules’ well established lattice twist into a dynamic model for
microtubule gliding, we could reproduce both types of trajectories. Interestingly, as a function of the
microtubules’ length we found length intervals of stable rings alternating with regions where wavy and
more complex dynamics prevails. Finally, both types of dynamics (rings and waves) can be rationalized
by considering simple limits of the full model.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Microtubules (MTs) are one of the three major biopolymers of
the cytoskeleton of eukaryotic cells (the others being the actin
filaments, and the rather diverse group of intermediate filaments).
They are involved in cellularmechanics and stability, but also serve
very dynamic purposes like cellular transport and cell division,
to mention but a few examples [1]. A large part of these ‘active’,
i.e. non-equilibrium, processes is related to the action of molecular
motors [2]. These small protein machines transform chemical
energy delivered by the cell – typically in the form of adenosine-
triphosphate (ATP) – intomechanicalwork, allowing them tomove
unidirectionally along the microtubules, and to exert forces and
torques.
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To visualize the combined action of microtubules and motors,
a common and easy experimental setup is the so-called ‘gliding
assay’ (also called ‘motility assay’): microtubule-associatedmolec-
ular motors – typically kinesins – are attached to a substrate, typi-
cally a glass slide. Adding microtubules into the ATP-rich solution,
these are ‘caught’ by the motors and propelled by them along the
surface. In fact, themost commonmicrotubulemotor, kinesin, was
discovered this way [3]. Unfortunately, from the biophysics side
there was only a brief period of interest in gliding motion, mostly
concerned with the force exerted by and the fluctuations of mo-
tors [4–6]. More recently – first using the second major cytoskele-
tal filament, actin [7], and later on microtubules [8] – high-density
gliding assays incited quite some interest as amodel system for the
collective motion of self-propelled particles. In spite of this, glid-
ing assays rather eke out a living as a – though very important –
tool to test the functioning of (e.g. freshly extracted) motors: if the
filament motion is diffusive, the motors are not functional. If, in
contrast, the filaments perform unidirectional motion – if they are
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Fig. 1. Characteristic traces of various gliding microtubules over time spans of several minutes. They show distinctive patterns one would not expect for the propulsion of
a semiflexible (WLC) filament: (a) circles and (b) waves. The scale bars are 10 µm. The underlying data are courtesy of Steven Koch’s lab [13].

gliding along the substrate – this is a clear signature of activemotor
transport. In our opinion it has been mostly overlooked (with few
exceptions, cf. [9,10]) that detailed observations of gliding dynam-
ics can be used to study the mechanics and dynamics of individual
filaments, and this in a well-controlled, non-equilibrium situation.
Moreover, gliding assays are a very interesting dynamical system
with underestimated complexity.

One expects gliding microtubules to be transported unidirec-
tionally along straight trajectories—perturbed only by small ther-
mal and motor-induced fluctuations. However, one consistently
finds a fraction of the trajectories to be mysteriously curved, an
observation in obvious contradiction with the MT being a simple,
intrinsically straight, semiflexible filament: one can observe arc-
shaped MTs running on circular trajectories [11,12] with radii of a
few tens of microns, cf. Fig. 1(a). Other MTs move on quite regu-
lar wavy trajectories, cf. Fig. 1(b), with wavelengths of few tens of
microns and somewhat smaller amplitude [13]. In addition, more
complex trajectories like spirals can occur and circular gliding sim-
ilar to the one described here has been recently also found in glid-
ing assays at high filament density [14,8].

Obviously, complex trajectories of the kind shown in Fig. 1 can
not be understood within the classical elastic beam or worm-like
chain (WLC) model. On the other hand, they are too common –
though often regarded as artifacts – and far too regular to be caused
bymotor-induced fluctuations.We here propose that the observed
trajectories may well be a signature of the polymorphic structure
of the MTs: in fact, MTs are known not to be simple semiflexible
filaments, but rather to display both lattice twist and, as recently
suggested [15–18], also intrinsic curvature.

2. Structure of microtubules and the elasticity of squeezed
helices

Microtubules have a lattice twist. Microscopically, MTs are
composed of a certain number of tubulin protofilaments (PFs), in
vivo usually 13, that consist of head-to-tail polymerized tubulin
dimers [1]. Together, the PFs build a hollow tube structure, the
MT. MTs with 11–15 protofilaments are quite common, especially
when polymerized in vitro. Due to the structure of the tubulin
dimers and their arrangements within the MT’s lattice, if their
number differs from 13 the PFs are not straight but helically
twisted along the axis of theMT’s lattice. Consequently, in motility
assays, as kinesin motors walk along the protofilaments [19], such
MTs rotate around their axis while gliding. This fact was used to
independently measure the lattice twist, in addition to structural
analysis (cryo-TEM), and it is nowadays well accepted that the MT
lattice twist repeat lengths (pitches) are about P = +3 µm (MT

with 12 PFs) and −6 µm (14 PFs), where ± signs refer to right-
/left-handed twist [20,19]. Note that even 13 PF-microtubules are
not perfectly straight, best fits to cryo-TEM data suggest a pitch of
+25µm,which is however often longer than the typicalMT length.

Microtubules can have a preferred curvature. Apart from
the structural property of lattice twist, it recently became
increasingly evident that MTs have important internal degrees
of freedom. Namely, experiments with isolated PFs not forming
a MT lattice [11,21,15], and under taxol-stabilized conditions,
suggest tubulins – and hence PFs and MTs – to be multistable,
displaying several conformations: (i) a straight state; (ii) a weakly
curved state with radius of curvature 250–300 nm; and (iii) a
highly curved state with radius of curvature 20–30 nm (note that
these curvatures correspond to a single PF). In fact, the curved
states have slightly lower energy than the straight one and are
hence preferred. However, when curved PFs are constrained in
the MT’s lattice, they cannot all bend as they would intrinsically
prefer: the MT lattice is a frustrated, mechanically prestressed
system. Developing models for the MT comparing all the relevant
energies, we recently have shown [16–18] that states where few
neighboring PFs are curved in their preferred direction, while the
others have to accommodate and pay a bending energy penalty,
can indeed have lower energy than the completely straight state.
This allowed us already to explain the measured apparent length-
dependent persistence length of MTs [22,16], as well as MT ring
formation under gliding-induced buckling [18]. The typical radius
of curvature for the whole MT lattice induced by PFs switching to
their curved conformations is of order 10 µm [16] for the weakly
curved state and≃1µmfor the highly curved state [18]. The highly
curved state typically has to be excited by larger forces, e.g. by
motor-induced buckling as discussed in [18], than the weakly
curved one.

For MTs gliding freely in a motility assay, only the weakly
curved state will be accessible by the prevalent forces. We will
neglect here also the possibility of a switching dynamics of the PFs
(see [18] for a discussion of force/torque-induced switching) and,
for simplicity, only consider a given static, i.e. quenched, state with
fixed twist and intrinsic curvature. Obviously, twist and intrinsic
curvature taken together give rise to an overall helical structure of
the MT (i.e. not just lattice twist but a helix in space). As MTs in
gliding assays are – for not too low motor coverage – effectively
confined to two dimensions (2D), this leads us to the consideration
of confined ‘squeezed’ helices and their self-propulsion dynamics.

Squeelices: three-dimensional helices confined to two di-
mensions. Let us first estimate the relevant energies in the
problem. The bending energy of a worm-like chain is given by
B
2

 L
0 κ(s)ds, where B = 10−23 N m2 is the bending stiffness of the

MT, κ is the curvature and L the filament length. Assuming that a
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