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h i g h l i g h t s

• Rigid body rotation of phase space elements extracted from flow gradient.
• Polar rotation angle (PRA) is introduced to identify invariant tori.
• Applications to vortex detection are illustrated.
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a b s t r a c t

Wepropose rotation inferred from the polar decomposition of the flow gradient as a diagnostic for elliptic
(or vortex-type) invariant regions in non-autonomous dynamical systems. We consider here two- and
three-dimensional systems, in which polar rotation can be characterized by a single angle. For this polar
rotation angle (PRA),wederive explicit formulas using the singular values and vectors of the flowgradient.
We find that closed level sets of the PRA reveal elliptic islands in great detail, and singular level sets
of the PRA uncover centers of such islands. Both features turn out to be objective (frame-invariant) for
two-dimensional systems. We illustrate the diagnostic power of PRA for elliptic structures on several
examples.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Complex dynamical systems exhibit a mixture of chaotic and
coherent behavior in their phase space. The lattermanifests itself in
coherent islands of regular behavior surrounded by a chaotic back-
ground flow. The best known classic examples of such islands are
formed by Kolmogorov–Arnold–Moser (KAM) tori, composed of
quasi-periodic trajectories in Hamiltonian systems (see, e.g., [1,2]).
Outside elliptic regions filled by such tori, chaotic trajectories dom-
inate the dynamics. For steady, time-periodic and quasi-periodic
flows, the techniques of KAM theory help in visualizing elliptic re-
gions (see, e.g., [3,4] for recent examples).

Even more intriguing is the existence of similar elliptic islands
in turbulent fluid flow, as broadly confirmed by experiments
and numerical simulations (see, e.g., [5,6]). Just as KAM islands,
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coherent vortices capture trajectories and keep themout of chaotic
mixing zones. Unlike KAM tori, however, coherent vortices are
composed of trajectories that are generally not recurrent in any
frame. During their finite time of existence, these coherent vortices
traverse without filamentation but also without displaying any
particular periodic or quasiperiodic pattern. Still, we generally
refer to such regions here as elliptic, as they mimic the dynamic
role of elliptic islands occupied by classic KAM tori.

Eulerian approaches to describing elliptic islands seek domains
where rotation dominates the instantaneous velocity field. At the
simplest level, this involves locating regions of closed streamlines,
high enough vorticity or low enough pressure (cf. [7,8] for
reviews). Suchdomains reveal instantaneous velocity field features
at a low cost, but are unable to frame long-term material
coherence exhibited by trajectories. In addition, the results from
these instantaneous approaches depend on the choice of scalar
thresholds and on the frame of reference.

More sophisticated Eulerian principles for elliptic regions
seek sets of points where rotation dominates strain (see, e.g.,
[9–12,7,13], and also Jeong and Hussain [7] and Haller [8] for
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reviews). These principles infer both rotation and strain from
the instantaneous velocity gradient, thereby rendering the results
Galilean invariant. The elliptic regions they provide, however, still
change under rotations of the frame. Since truly unsteady flows
have no distinguished frame of reference [14], frame-dependence
in the detection of vortical structures is an impediment. Indeed,
the available measurement velocity data of geophysical flows is
often given in a rotating frame to begin with, and no optimal frame
is known a priori for structure detection. More importantly, no
mathematical relationship is known (or likely to exist) between
instantaneous rotation–strain principles and material coherence
over extended time intervals.

In contrast, Lagrangian approaches to elliptic islands seek to
identify regions where trajectories stay close for longer periods.
These approaches can roughly be divided into three categories:
geometric, set-based and diagnostic methods. The geometric
methods identify elliptic domain boundaries as spacial closed
material lines showing no filamentation [15–17] or curvature
change [18]. Set-based methods partition the phase space into
almost invariant subsets (see [19,20] and references therein).
While the boundaries of such sets may undergo filamentation,
the overall subsets remain largely coherent. Finally, diagnostic ap-
proaches propose Lagrangian scalar fields whose features are ex-
pected to distinguish mixing regions from coherent ones [21–26].
These Lagrangian methods do not return identical results and are
not backed by specific mathematical results on the features they
highlight. In fact, the material invariance of the extracted vortical
boundaries is only guaranteed in the case of the geodesic approach
of Haller and Beron-Vera [15] and Haller [17].

The Lagrangian methods listed above focus on stretching or
lack thereof. In contrast, very few Lagrangian diagnostics target
rotation, even though sustained and coherent rotation is perhaps
the most striking feature of trajectories forming elliptic islands.
One of the few exceptions targeting material rotation is the finite-
time rotation number (FTRN), developed to detect hyperbolic
(i.e., repelling or attracting as opposed to vortical) structures
through its ridges [27]. The FTRN assumes that the dynamical
system is defined via an iteratedmapwith an annular phase space.
For dynamical systems with general time dependence and non-
annular phase space, however, this approach is not applicable.
This also means that the approach is frame-dependent, given
that translations and rotations will generally destroy the time-
periodicity of a dynamical system.

Another Lagrangian diagnostic involving a consideration of
rotation is the mesocronic analysis of Mezić et al. [25]. This
approach offers a formal extension of the Okubo–Weiss principle
from the velocity gradient to the flowgradient, classifying an initial
condition as elliptic if the flow gradient has complex eigenvalues
at that point. The mesoelliptic diagnostic is efficient to compute
and has been shown to mark vortical regions in several cases.
The complex eigenvalues of a finite-time flowmap, however, have
no known mathematical relationship with elliptic islands in flows
with general time dependence. Accordingly, some annular subsets
of classic elliptic domains fail the test of meso-ellipticity even in
steady flows (cf. [25], Fig. 1).

Here we propose a mathematically precise assessment of
material rotation, the polar rotation angle (PRA), as a new
diagnostic for elliptic islands in two- and three-dimensional flows.
The PRA is the angle of the rigid-body rotation component obtained
from the classic polar decomposition of the flow gradient into
a rotational and a stretching factor. We show how the PRA can
readily be computed from invariants of the flow gradient and the
Cauchy–Green strain tensor. Level sets of the PRA turn out to be
objective (frame-invariant) in planar flows. We find that these
level sets reveal the internal structure of elliptic islands in great
detail at a relatively low computational cost. We also find that
local extrema of the PRA mark elliptic island centers suitable for
automated vortex tracking in Lagrangian fluid dynamics.

2. Preliminaries

2.1. Set-up

Consider the dynamical system

ẋ = u(x, t), x ∈ D ⊂ R3, t ∈ I ⊂ R, (1)

with the corresponding flow map

Ftt0 : D → D

x0 → x(t; t0, x0), (2)

the diffeomorphism that takes the initial condition x0 to its time-t
position x(t; t0, x0) under system (1). Here, D denotes the phase
space and I is a finite time interval of interest.

The deformation gradient ∇Ftt0 governs the infinitesimal defor-
mations of the phase space D . In particular, an initial perturba-
tion ξ at point x0 and time t0 is mapped, under the system (1), to
∇Ftt0(x0)ξ at time t . We also define the right Cauchy–Green strain
tensor,

Ct
t0 :=


∇Ftt0

⊤
∇Ftt0 : x0 → Ct

t0(x0), (3)

where the symbol ⊤ denotes matrix transposition. The tensor
Ct
t0(x0) is symmetric and positive definite. Therefore, it has an or-

thonormal set of eigenvectors {ξ1(x0), ξ2(x0), ξ3(x0)}. The corre-
sponding eigenvalues 0 < λ1(x0) ≤ λ2(x0) ≤ λ3(x0) therefore
satisfy

Ct
t0(x0)ξi(x0) = λi(x0)ξi(x0), i ∈ {1, 2, 3}, (4)

⟨ξj(x0), ξk(x0)⟩ = 0, j, k ∈ {1, 2, 3}, j ≠ k, (5)

with ⟨·, ·⟩ denoting the Euclidean inner product. For notational
simplicity, we omit the dependence of the eigenvalues and eigen-
vectors on t0 and t .

2.2. Polar decomposition

Any square matrix admits a factorization into the product of a
unitarymatrixwith a symmetric positive-semidefinitematrix [28].
When the square matrix is nonsingular, such as ∇Ftt0 , then the
symmetric factor in the decomposition is positive definite.

Specifically, the deformation gradient ∇Ftt0 admits a unique
decomposition of the form

∇Ftt0 = Rt
t0U

t
t0 , (6)

where the 3 × 3 matrices Rt
t0 and Ut

t0 have the following
properties [28–30]:

1. The rotation tensor Rt
t0 is proper orthogonal, i.e.,

Rt
t0

⊤Rt
t0 = Rt

t0


Rt
t0

⊤
= I, detRt

t0 = 1.

2. The right stretch tensor Ut
t0 is symmetric and positive-definite,

satisfying
Ut

t0

2
= Ct

t0 . (7)

3. The eigenvalues of Ut
t0 are

√
λk with corresponding eigenvec-

tors ξk:

Ut
t0(x0)ξk(x0) =


λk(x0)ξk(x0), k = 1, 2, 3. (8)

4. The time derivative of the rotation tensor satisfies

Ṙt
t0 =


W (x(t), t)−

1
2
Rt
t0


U̇t

t0


Ut

t0

−1

−

Ut

t0

−1 U̇t
t0

 
Rt
t0

⊤Rt
t0 , (9)
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