
Physica D 315 (2016) 13–32

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Positive and necklace solitary waves on bounded domains
G. Fibich ∗, D. Shpigelman
School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

h i g h l i g h t s

• We present new solitary wave solutions of the two-dimensional NLS on bounded domains.
• These necklace solitary waves become unstable well below the critical power for collapse.
• On the annulus they have a second stability regime well above the critical power.
• We introduce a non-spectral variant of Petviashvili’s renormalization method.

a r t i c l e i n f o

Article history:
Received 9 June 2015
Received in revised form
28 July 2015
Accepted 26 September 2015
Available online 13 October 2015
Communicated by V.M. Perez-Garcia

Keywords:
Solitary waves
Nonlinear Schrödinger equation
Bounded domains
Nonlinear optics
Stability

a b s t r a c t

We present new solitary wave solutions of the two-dimensional nonlinear Schrödinger equation on
bounded domains (such as rectangles, circles, and annuli). These multi-peak ‘‘necklace’’ solitary waves
consist of several identical positive profiles (‘‘pearls’’), such that adjacent ‘‘pearls’’ have opposite signs.
They are stable at low powers, but become unstable at powers well below the critical power for
collapse Pcr. This is in contrast with the ground-state (‘‘single-pearl’’) solitarywaves on bounded domains,
which are stable at any power below Pcr.

On annular domains, the ground state solitarywaves are radial at lowpowers, but undergo a symmetry
breaking at a threshold powerwell below Pcr. As in the case of convex bounded domains, necklace solitary
waves on the annulus are stable at low powers and become unstable at powers well below Pcr. Unlike on
convex bounded domains, however, necklace solitarywaves on the annulus have a second stability regime
at powerswell above Pcr. For example,when the ratio of the inner to outer radii is 1:2, four-pearl necklaces
are stable when their power is between 3.1Pcr and 3.7Pcr. This finding opens the possibility to propagate
localized laser beams with substantially more power than was possible until now.

The instability of necklace solitary waves is excited by perturbations that break the antisymmetry
between adjacent pearls, and is manifested by power transfer between pearls. In particular, necklace
instability is unrelated to collapse. In order to compute numerically the profile of necklace solitary waves
on bounded domains, we introduce a non-spectral variant of Petviashvili’s renormalization method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear Schrödinger equation (NLS) in free space

iψz(z, x, y)+1ψ + |ψ |
2ψ = 0, −∞ < x, y < ∞, z > 0, (1a)

ψ(0, x, y) = ψ0(x, y), −∞ < x, y < ∞ (1b)

is one of the canonical nonlinear equations in physics. In nonlinear
optics it models the propagation of intense laser beams in a bulk
Kerr medium. In this case, z is the axial coordinate in the direction
of propagation, x and y are the spatial coordinates in the transverse
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plane, 1ψ :=
∂2

∂x2
ψ +

∂2

∂y2
ψ is the diffraction term, and |ψ |

2ψ

describes the nonlinear Kerr response of the medium. For more
information on the NLS in nonlinear optics and on NLS theory in
free space and on bounded domains, see the recent book [1].

In some applications, it is desirable to propagate laser beams
over long distances. In theory, this can be done by the NLS solitary
waves ψsw = eiµzRµ(x, y), where Rµ is a solution of

1R(x, y)− µR + |R|2R = 0, −∞ < x, y < ∞. (2)

Unfortunately, the solitary wave solutions of (1) are unstable, so
that when perturbed, they either scatter (diffract) as z → ∞, or
collapse at a finite distance Zc < ∞.

In order to mitigate this ‘‘dual instability’’ limitation, Soljacic,
Sears, and Segev [2] proposed in 1998 to use a necklace configu-
ration that consists of n identical beams (‘‘pearls’’) that are located
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Fig. 1. A circular necklace beamwith 8 pearls (beams). Adjacent pearls are identical
but have opposite phases. The electric field vanishes on the rays (solid lines)
between adjacent pearls.

along a circle at equal distances, such that adjacent beams are out
of phase (i.e., have opposite signs), see Fig. 1. The idea behind this
setup is that the repulsion between adjacent out-of-phase beams
resists the diffraction of each beam, and thus slows down its ex-
pansion. Necklace beams in a Kerr mediumwere first observed ex-
perimentally by Grow et al. [3]. Necklace beams were also studied
in [4–7]. Recently, Jhajj et al. used a necklace-beam configuration
to set up a thermal waveguide in air [8].

As we shall see, there are no necklace solitary wave solutions of
the free-space NLS (1). Thus, in a bulk medium all necklace beams
ultimately collapse or scatter. Yang et al. [7] showed theoretically
and experimentally that solitary necklace solutions can exist in a
bulk medium with an optically-induced photonic lattice. Because
of the need to induce a photonic lattice, however, this approach
is not applicable to propagation is a Kerr medium. In this study we
show that necklace solitarywaves exist in a Kerrmedium, provided
the beam is confined to a bounded domain. This setup corresponds
to propagation in hollow-core fibers, and is therefore relatively
easy to implement experimentally.

In hollow-core fibers, beam propagation can bemodeled by the
NLS on a bounded domain

iψz(z, x, y)+1ψ + |ψ |
2ψ = 0, (x, y) ∈ D, z > 0, (3a)

subject to an initial condition

ψ0(0, x, y) = ψ0(x, y), (x, y) ∈ D, (3b)

and a Dirichlet boundary condition at the fiber wall

ψ(z, x, y) = 0, (x, y) ∈ ∂D, z ≥ 0. (3c)

Here D ⊂ R2 is the cross section of the fiber, which is typically a
circle of radius ρ, denoted henceforth by Bρ .

Eq. (3) admits the solitary waves ψsw = eiµzRµ(x, y), where Rµ
is a solution of

1R(x, y)− µR + |R|2R = 0, (x, y) ∈ D, (4a)
R(x, y) = 0, (x, y) ∈ ∂D. (4b)

In free space, the solitary-wave profile [i.e., the solution of (2)]
represents a perfect balance between the focusing nonlinearity and
diffraction. On a bounded domain, the reflecting boundary ‘‘works
with’’ the focusing nonlinearity and ‘‘against’’ the diffraction. In
fact, the reflecting boundary can support finite-power solitary
waves even in the absence of a focusing linearity. These linear
modes are solutions of the eigenvalue problem

1Q (x, y) = µQ , (x, y) ∈ D, Q (x, y) = 0, (x, y) ∈ ∂D. (5)

Of most importance is the first eigenvalue of (5) and its
corresponding positive eigenfunction, which we shall denote
by µlin and Q (1), respectively.

Solitary wave solutions of (3) were studied by Fibich and
Merle [9], Fukuizumi, Hadj Selem, and Kikuchi [10], and Noris,
Tavares, and Verzini [11], primarily when D is the unit circle B1

and Rµ is radial, i.e., Rµ = Rµ(r), r =

x2 + y2, and 0 ≤ r ≤ 1.

In that case, for any µlin < µ < ∞, there exists a unique positive
solution R(1)µ (r). This solution is monotonically decreasing in r , and
its power P(R(1)µ ) :=


B1

|R(1)µ |
2 dxdy is monotonically increasing

inµ from P = 0 atµ = µlin+ to P = Pcr asµ → ∞. In addition to
this ground state, there exist a countable number of excited radial
states {R(n)µ (r)}

∞

n=2, which are non-monotone and change their sign
inside B1. These excited states have a unique global maximum at
r = 0, and additional lower peaks on concentric circles inside B1.

The excited states {R(n)µ (r)}
∞

n=2 are the two-dimensional radial
analog of the excited states of the one-dimensional NLS on an inter-
val, see Eq. (26) below,whichwere studied by Fukuizumi et al. [10].
In our study here we consider a different type of solitary waves
of (3), which attain their global maximum at n distinct points in-
side D. These necklace solitary waves are thus the non-radial two-
dimensional analog of the one-dimensional excited states.

The paper is organized as follows. In Section 2 we briefly con-
sider necklace solutions in R2, which correspond to propagation in
a bulk medium. We illustrate numerically that their expansion is
slower than that of single-beam solutions, and provide an infor-
mal proof that there are no necklace solitary waves in free space.
In Section 3 we briefly review the theory for the NLS on bounded
domains. In Section 4 we construct necklace solitary waves with
n pearls (peaks), denoted by R(n)µ , on rectangular, circular, and
annular domains. To do that, we first compute the single-pearl
(single-peak/ground state) solitary wave of (4), denoted by R(1)µ , on
a square, a sector of a circle, and a sector of an annulus, respec-
tively. Our numerical results for single-pearl solutions of (4) sug-
gest that1:

1. R(1)µ exists for µ in the range µlin < µ < ∞.
2. As µ → µlin, R(1)µ approaches the positive linear mode Q (1),

i.e., R(1)µ ∼ c(µ)Q (1), where c(µ) → 0.
3. As µ increases, R(1)µ becomes more localized, the effect of

the nonlinearity becomes more pronounced, and that of the
reflecting boundary becomes less pronounced.

4. In particular, asµ → ∞, R(1)µ approaches the free-space ground
state R(1),freeµ,2D , which is the positive solution of (2).

5. The pearl power P(R(1)µ ) :=


|R(1)µ |
2 dxdy is monotonically

increasing in µ. In particular,

d
dµ

P(R(1)µ ) > 0, lim
µ→µlin

P(R(1)µ ) = 0,

lim
µ→∞

P(R(1)µ ) = Pcr,
(6)

where

Pcr =


R2

R(1),freeµ,2D

2 dxdy

is the critical power for collapse.
6. On an annular domain, the ground state solitary waves are

radial (ring-type) at low powers, but undergo a symmetry
breaking into a single-peak profile at a threshold power well
below Pcr. In particular, Eq. (4) on the annulus,
(a) does not have a unique positive solution.
(b) has a positive solution which is not a ground state.

1 These results are consistent with those obtained for radial positive solitary
waves on the circle [9] and for positive one-dimensional solitary waves on an
interval [10].
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