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HIGHLIGHTS

e A perturbed area-preserving map from the boundary of hyperbolicity has a parabolic orbit.
o Numerics show a channel of measure less than one containing elliptic orbits.
e The complement of the channel has positive measure and positive Lyapunov exponents.
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ABSTRACT

We use numerical and analytical tools to provide arguments in favor of the existence of a family of smooth,
symplectic diffeomorphisms of the two-dimensional torus that have both a positive measure set with
positive Lyapunov exponent and a positive measure set with zero Lyapunov exponent. The family we
study is the unfolding of an almost-hyperbolic diffeomorphism on the boundary of the set of Anosov
diffeomorphisms, proposed by Lewowicz.
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1. Introduction

Due to an extremely complicated intermixture of regular and
chaotic orbits, the problem of the orbit structure of a generic,
smooth symplectic map remains mainly open, even for the two-
dimensional case. When the map is sufficiently smooth, its phase
space typically exhibits both regular dynamics due to invariant
KAM curves (for instance, in the neighborhood of elliptic periodic
orbits) and seas of chaotic orbits (which numerical investigations
indicate can be densely covered by a single orbit). Moreover, such
structures are observed - again in numerical simulations - to occur
at all scales. All this is well known and shown in many papers, for
areview see, e.g., [1]. It is generally agreed that no tools currently
exist that allow one to rigorously elucidate the main points of this
observed picture [2]. Of course, selected parts of this landscape
can be explained; for example, KAM theory provides a proof of the
existence of invariant curves near generic elliptic periodic points,
and it is known that a generic homoclinic bifurcation gives rise
to a transitive set of full Hausdorff dimension [3]. However even
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for this case, there is essentially no rigorous measure-theoretic
characterization of the orbit behavior in the so-called chaotic
zones—as depicted in Arnold’s famous sketch [4,5].

There has been much study of the destruction of invariant
curves, and the resulting transition from regular (quasiperiodic)
to irregular (chaotic) behavior, in parameterized families of area-
preserving maps. Since a smooth invariant curve is not isolated, its
destruction is caused by a loss of smoothness and, at least for twist
maps, to the formation of a new, quasiperiodic invariant Cantor
set: an Aubry-Mather set [6,7]. In many families, one observes
the ultimate destruction of all the invariant circles (of a given
homotopy class), and this leads to the study of the “last” invariant
curve, and the development of Greene’s residue criterion and
renormalization theory [8].

At the opposite extreme, the ergodicity and hyperbolicity prop-
erties of Anosov diffeomorphisms are well-understood [9]. This
extreme of uniform hyperbolicity can be thought of as a com-
plementary limit to integrability: the study of perturbations from
“anti-integrability” was initiated in [ 10]. Aubry’s results are based
on the consideration of infinitely-degenerate diffeomorphisms and
provide proofs of the existence of horseshoes; however, they do
not lead to proofs of a positive measure of chaotic orbits.

There have been attempts to understand the dynamics of
symplectic diffeomorphisms on the torus beyond the boundary of
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the Anosov maps [11]. Przytycki proved the existence of a curve
of diffeomorphisms that cross the Anosov boundary such that,
outside the boundary, there is a domain on the torus bounded
by a heteroclinic cycle formed by merged separatrices of two
saddles that contains a generic elliptic fixed point. The remaining
set of positive measure has a nonhyperbolic structure and positive
Lyapunov exponent. The drawback of this example is in its infinite
codimension in the space of smooth symplectic diffeomorphisms
with C-topology: the merging of separatrices of saddles is
a codimension-infinity phenomenon. Przytycki’s family unfolds
a smooth, almost-hyperbolic symplectic diffeomorphism of the
torus proposed earlier by Lewowicz [12]. This diffeomorphism is
a K-system that has positive Lyapunov exponent [13].

This same trick (with the same drawbacks) was used later
in [14] to construct symplectic diffeomorphisms arbitrarily close to
Lewowicz’s almost-hyperbolic map. Smooth symplectic, transitive
diffeomorphisms that are K-systems on closed two-dimensional
manifolds other than tori were constructed in [15] (see also, [ 16]).
Again it is not clear how these results can be used to understand
the orbit structure for a generic diffeomorphism.

Following [17], we study themapf : T?> — T2, where T = R/Z,
defined through

fxy)=x+y+g®,y+gk) mod 1. (M
We will use the fundamental domain [—%, %)2 for the torus, so

eg,xmod1 =x—|x+ %J .If the “force” g were a degree-zero circle
map, then (1) would be a generalized Chirikov standard map [1].
Instead, we assume that g is a degree-one, circle map:

gx+1) =gk + 1. (2)

When g is a monotone increasing diffeomorphism, (1) is Anosov:
every orbit is uniformly hyperbolic and f is topologically conjugate
to Arnold’s cat map a : T?> — T?,

ax,y) =A <;> mod 1, whereA = G }) . (3)

More generally, Franks showed that (1) with (2) is semi-conjugate
toa[9], i.e., there is a continuous, onto map k : T> — T2 such that

kof =aok. (4)

The map k depends continuously on g, and when g is strictly
monotone, k is a homeomorphism, implying - as mentioned above
- that f is then conjugate a.

In [17], the first author made an attempt to elucidate the
features of (1) when the circle map g acquires a critical fixed point,

g(xp) = Dg(xp) = 0. (5)

In this case (1) has a parabolic fixed point p = (x,,0) and is
no longer Anosov. The main result of [17] was to show that the
diffeomorphism acquires elliptic behavior when it crosses this
Anosov boundary. Another feature of this map is the separation
of the phase space into two regions, one in which the dynamics is
nonhyperbolic and the other in which the diffeomorphism appears
to be nonuniformly hyperbolic. Though neither of these statements
were proved in [17], considerations in favor of these statements
were presented.

In this paper we try to use numerical methods to substan-
tiate the following assertions about (1) under the assumptions
(2)and (5).

e There is an invariant, open region E C T? whose boundary
is formed from the stable and unstable manifolds of two fixed
points of the map, a hyperbolic saddle, h, and a parabolic point,
p. The Lebesgue measure of E is strictly less than that of T2,

e The channel E contains all non-hyperbolic orbits of f, and
indeed has elliptic orbits for generic ¢ > 0.
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Fig. 1. Graph of the force g (6), fore = 0.5 and u = p,(e) ~ 0.27696 from (9),
with the parabolic point x, ~ 0.13386 and saddle x, ~ —0.27889.

o Conversely, the dynamics of f|y, where H = T2 \ E, is
nonuniformly hyperbolic; that is, the map is ergodic in H and
has positive Lyapunov exponent.

Of course, these statements are purely numerical observations,
which should therefore be considered mathematically as conjec-
tures.

2. A parabolic standard map

Following [12,17], we study the dynamics of (1) using the
degree-one circle map

800 = X+ —— [ — (14 &) sin@x)]. (6)
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where 1 and € > 0, see Fig. 1. Note that whene = —1and u© = 0,
the map (1) reduces to Arnold’s cat map (3).

The map f is a diffeomorphism whenever g is smooth. Indeed
fFly) ==y, y —gx—y)).
Moreover, this map is reversible, f oS = Sof~!, with the “second”
reversor of Chirikov’s map (it does not have the first reversor since
g isnot odd when u # 0),
Sxy)=x=-y, =y, (7
with the fixed set Fix(S) = {(s, 0) : s € T}. Note that since S is an
involution, the map
foSxy)=Sof '(xy) = x—2y+gx—y), -y +gKx—Y))
is also a reversor, with the fixed set
Fix(f o S) = {s+ 38(s), 38(s) : s € T}.

Under the assumption (5), g(x) = @((x —x,)?), the map (1) has
a (symmetric) parabolic fixed point p = (x,, 0). For the case (6)
this fixed point occurs at

X ! sec”'(1+4¢) 1\/? 1 > + 0% (8)
= — &) =—./¢ - —¢ g ,
P on V2 12

when p is chosen to be
n = up(e) = (14 ¢)sinRnx,) — 2mx,

=e+¢e)—sec(1+¢)
\/§ 3/2(

= —¢

9 2
3 1——e+0( )). (9)
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