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h i g h l i g h t s

• The pruning method can be applied to certain physical models.
• The combinatorics of the pruning map is found uncrossing invariant manifolds.
• Infinite pruning regions are related to singularities without rotation.
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a b s t r a c t

In this note we explain how to find the minimal topological chaos relative to finite set of homoclinic and
periodic orbits. Themain tool is the pruningmethod, which is used for finding a hyperbolic map, obtained
uncrossing pieces of the invariant manifolds, whose basic set contains all orbits forced by the finite set
under consideration. Then wewill show applications related to transport phenomena and to the problem
of determining the orbits structure coexisting with a finite number of periodic orbits arising from the
bouncing ball model.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

By minimal topological chaos relative to a homoclinic orbit P
we mean the minimal structure of orbits that a system containing
this homoclinic orbit can have in its isotopy class. It was Poincaré
who realizes that the existence of such orbits implies a higher
complexity [1], and Birkhoff and Smale proved that, under regular
conditions, there are infinitelymany periodic orbits in every neigh-
bourhood of P [2–5].

It is known that a non-autonomous perturbation of an inte-
grable system, satisfyingMelnikov’s conditions, creates homoclinic
orbits with transversal intersection and also at least a chaotic set
having a dense set of periodic orbits. See Fig. 1. Such models have
many applications going from transport phenomena [6], the anal-
ysis of bifurcations in a driver oscillator [7] to the dynamics of bub-
bles in time-periodic straining flows [8]. In all these applications a
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natural question is the following: which is the minimal periodic or-
bits structure that a map, having P as a homoclinic orbit, can have?
The same question can be formulated if P is a finite set of homo-
clinic and periodic orbits since chaotic behaviour can be created
from the finite set of topological shapes induced by P . In [9] and ref-
erences there in, periodic orbits are studied in applications to laser
models, Lorentz and Rössler attractors, the Belousov–Zhabotinskii
reaction, etc. To answer that questionwe need the notion of forcing
introduced by P. Boyland.

Let f be a homeomorphism on the disk and let P be an orbit of f .
The isotopy class of (P, f ) is given by its braid typewhich identifies
all the orbits that are equivalent to P under isotopies [10]. We say
that (P, f ) forces an orbit Q if every homeomorphism g isotopic to
f relative to P , having an orbit with the braid type of P , must also
has an orbit with the braid type of Q . The set of all the orbits whose
braid types are forced by an orbit (P, f )will be denoted byΣP . Thus
ΣP contains a topological representative of each orbit that is forced
by P , and it shows us the minimal description of the set of periodic
orbits that a map can have given only a topological data.

One of the first result about the forcing relation of homoclinic
orbits was stated by Handel in [11]. He provides conditions for
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Fig. 1. Homoclinic orbit appearing after a non-autonomous perturbation of an
integrable system.

ensuring that a finite set of homoclinic orbits imply the existence
of a fixed point. In Hulme’s thesis [12] there exists an extension
of the Bestvina–Handel algorithm [13] which can be used for
computing an efficient graph map or a generalized pseudoanosov
representative within the isotopy class of a homoclinic orbit.

In [14–16] Collins has proposed a method for determining a
graph representative whose orbits represent the dynamics forced
by the homoclinic orbit P and, under certain conditions, construct
a diffeomorphism that minimizes the topological entropy the
isotopy class relative to P . This is done studying a trellis, a part of
the homoclinic tangle of P . A similar motivation was given in [17]
by Mitchell and Delos, where the attention was towards into the
escape segments by iterations of the map.

All these methods can find exact or approximated symbolic
dynamics inΣP but unfortunately the number of symbols is always
increased as the trellis becomes more andmore complicated and a
computational cost is needed. Another disadvantage is that, except
in a few cases, it is not clear how to apply them to the study of an
infinitely many family of homoclinic orbits.

In [18] a pruningmethod is proposed for finding, given a homo-
clinic orbit, an AxiomA diffeomorphismwhose non-wandering set
realizes all the braid types forced by that orbit. This method can be
considered as a differentiable version of the pruning theory devel-
oped by de Carvalho [19] for pruning surfaces homeomorphisms,
and can be extended for finding ΣP rel to a finite set of homo-
clinic and periodic orbits, since ΣP is actually the complement of
the pruning region rel to P . In [20] the technique was used for or-
ganizing certain horseshoe periodic orbits by forcing.

In fact, in this note we will explain how the pruning method
works if P consists of certain infinite families of homoclinic orbits
found in transport phenomena by Rom-Kedar in [21,22]. It will
be showed, up isotopies, the pruning region rel to these orbits.
Furthermore the method will be applied to a finite set of periodic
orbits which include those ones studied by Tufillaro in [23] for the
bouncing ball model, who has proposed a pruning region joining
invariant manifolds. We improve his pruning region showing the
existence of amap that realizes itwhichwas not proved in [23].We
should note that the lines followed in this work can be adapted to
a wide range of sets of periodic and homoclinic orbits arising from
experimental data.

2. A model for minimal chaos

Our working model is the Smale horseshoe [5] which was
one the first examples exhibiting deterministic chaos. This is a
diffeomorphism F acting on a sub-disk of the disk as in Fig. 2.
F is an Axiom A map, that is, F has hyperbolic structure on its
non-wandering set which consists of an attractor point within
the left semi-disk and a Cantor set K contained in the union of
the rectangles V0 ∪ V1. Then it was proved that F restricted to K
is conjugated to the shift σ on the two-symbols compact space
Σ2 = {0, 1}Z. More general properties of Axiom A maps can be
found in [24]. Collapsing segments joining two boundary points it
is obtained the symbol square [25] represented in Fig. 2 as well.

We only devote our study to horseshoe homoclinic orbits of the
form q0 =

∞0.1w10∞, wherew is a finite word of symbols 0’s and

Fig. 2. The Smale horseshoe and its symbol square.

1’s, that is, homoclinic orbits at the intersection of the stable and
unstable manifolds of the fixed point with code 0∞. These orbits
often appear in dynamical applications in a wide range of systems
as this one in Fig. 1.

Nowwe recall the pruning ideas proposed by Cvitanović in [26].
He has observed that certain dynamical systems are better under-
stood if we consider them as incomplete or pruned horseshoes.
This means that certain systems can be obtained from the uncross-
ing of pieces of the invariant manifolds of the Smale horseshoe
or an another well-known Axiom A map. The regions where or-
bits were eliminated are called pruning regions. So the symbolic
dynamics of the system corresponds to the symbolic dynamics of
the horseshoe except the orbits included inside the pruning region.
This powerful idea simplifies the orbit analysis since it is sufficient
to find a good pruning region in order to describe the orbits struc-
ture.

Several authors as [25,27–30] have followed the pruning ap-
proach, and their results were directed to find rules for the remain-
ing symbol dynamics, but no illuminationwas provided about how
invariant manifolds influence the final grammar.

A pruning formalismwas given in [19] by de Carvalho for prun-
ing, in particular, the horseshoe F . It demands the existence of a
pruning domain, that is, a topological simply connected domain
D bounded by two segments θs and θu which belong to the sta-
ble manifold and the unstable manifold of periodic points, respec-
tively. ThenD is called a pruning domain if it satisfies the following
condition:

F n(θs) ∩ Int(D) = ∅ = F−n(θu) ∩ Int(D), ∀n ≥ 1. (1)

Thus the pruning theorem [19] claims that condition (1) is
sufficient for eliminating all orbit within Int(D) in the sense that
an isotopy of F can be implemented in such a way that there are
no recurrent points in Int(D) for the homeomorphism G at the end
of the isotopy. As a consequence the non-trivial dynamics of G are
given by σ on Σ2 \ ∪i∈Z F i(Int(D)). Because this theorem reigns
in the topological level in which there is not notion of invariant
manifolds, this is not applicable to Cvitanović’s pruning approach.

To solve that impasse one of us has proposed, in a joint work
with A. de Carvalho [31], a differentiable version of the pruning
theorem, that is used to prune Axiom A maps since hyperbolic
structure allows us to make G, the end of the pruning isotopy, an
Axiom A map too, although the most important property to point
out is that this pruning isotopy uncrosses invariant manifolds in a
controlled manner which means that uncrossings only happen in
the interior of D and its iterates. See [18] for the details.

Recalling that a bigon I is a simply connected domain bounded
by a segment of a stable manifold and a segment of an unstable
manifold, it was proved in [18] that, given a homoclinic orbit P ,
ΣP can be found eliminating all the bigons of F relative to P by
successive prunings. Fig. 3 shows the elimination of a bigon I under
the effect to the uncrossing of the invariant manifolds within D by
a pruning isotopy.
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