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This paper describes some typical behavior encountered in the response of a harmonically-excited
mechanical system in which a severe nonlinearity occurs due to an impact. Although such systems have
received considerable recent attention (most of it from a theoretical viewpoint), the system scrutinized
in this paper also involves a discrete input of energy at the impact condition. That is, it is kicked when
contact is made. One of the motivations for this work is related to a classic pinball machine in which a ball
striking a bumper experiences a sudden impulse, introducing additional unpredictability to the motion of
the ball. A one-dimensional analog of a pinball machine was the subject of a detailed mathematical study
in Pring and Budd (2011), and the current paper details behavior obtained from a mechanical experiment
and describes dynamics not observed in a conventional (passive) impact oscillator.

Mechanical experiments
Nonsmooth
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1. Introduction

It is well established that non-smooth dynamical systems are
capable of exhibiting a wide variety of fascinating behavior [1,2].
Some of this behavior, e.g., low-velocity grazing bifurcations, are
typically not exhibited by smooth dynamical systems [3], and some
experimental studies have been conducted [4-6]. The relative
maturity of this subject (at least from a theoretical perspective)
is reflected in a research monograph and the extensive list of
references contained therein [7].

Arecent paper [8] described some interesting behavior in a uni-
directional analog of a pinball machine. That is, an otherwise linear
oscillator experiences a sudden kick when it comes into contact
with a barrier located at a given position. In their work, they
showed some interesting bifurcation structure associated with this
form of non-smooth forcing. The current paper describes an exper-
imental study of just this type of system. Certain similarities and
differences are noted. For example, in [8], they chose parameter
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values (for example, very high viscous damping) such that the sys-
tem could be modeled as a first-order dynamical system, and thus
facilitate mathematical modeling of the system as a discrete map.
In the current study, the damping is relatively light (typical for
most structural and mechanical systems) and the experimental
data is compared with results from numerical simulation of the
governing differential equation. Even in the absence of external
periodic excitation the system is capable of exhibiting steady os-
cillatory behavior when the discrete addition of energy at impact
balances the energy dissipation due to damping.

It is also worth mentioning that aspects of the unpredictability
associated with the movement of a pinball is not unrelated to the
roulette wheel for example [9,10].

2. The underlying linear system

2.1. Free vibration

Since the underlying, i.e., non-contacting, system is linear we
can initially make use of some closed-form analytic solutions. It
is the initiation of contact that causes the system to suddenly
transition into nonlinear behavior.
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Fig.2. The free response of an undamped impact oscillator. (a)-(c) A schematic of a small ball rolling on a parabolic surface, (d)-(f) some typical time series, and (g) elliptical

phase trajectories cropped by the impact barrier.

Consider an old fashioned pinball machine as shown in Fig. 1(a).
We choose to model this system using the one-dimensional system
shown schematically in Fig. 1(b). Clearly, this is a somewhat
simplistic analog but we shall see that it s still capable of exhibiting
interesting dynamical behavior. This is the classic linear oscillator
in which a point mass is attached to a linear (Hookean) spring
and linear (viscous) dashpot. In the current study we consider the
spring to provide the restoring force that replaces the effect of
gravity and the pinball that rolls (downhill) due to the sloping
surface.

Initially suppose we simply have ¢ = y(t) = 0 and that there is

no impact barrier. The equation of motion is simply X = —wﬁx,
where w, = +/k/m is a constant (the natural frequency), and

given some non-zero initial conditions we get simple harmonic
motion about the equilibrium position x(t) = A cos(wnt + ¢). The
velocity is x(t) = —Aw, sin(w,t + ¢) and it is useful to plot the
phase trajectory (x(t), x(t)) to show ellipses (x> 4+ (X/w,)? = A?)
and the familiar exchange of energy between potential and kinetic.
This behavior is shown schematically in Fig. 2 in parts (a), (d) and
(g). In part (a) we make use of the conceptual aid of a small ball
rolling on a parabolic surface (which was also used directly as an
experimental system in [5]). Part (d) shows a typical time series
(with x(0) = 1.0, x(t) = 0, and thus A = 1 and ¢ = 0), with the
corresponding elliptical phase trajectory in part (g).

Suppose we place an impact barrier to the left of the equilibrium
position (at the bottom of the curve) and the small ball that can
otherwise roll along the surface without friction. Now assume the
ball is started from rest towards the right hand end, i.e., the initial
conditions are (x(0) = 1,%(0) = 0) and the impact barrier
prevents the ball from passing to the left of the barrier. If we further
assume that the mass experiences a perfect elastic rebound then
we can obtain the behavior shown in parts (b) and (e) when the
barrier is located at x, = —0.5 and parts (c) and (f) when the
barrier is located at x, = 0.0. Both of these are also contained
within the ellipse in part (g) in which the mass experiences a
sudden reversal of the sign of the velocity at impact. If we add linear
viscous damping or allow some discrete loss of energy at impact
(via a coefficient of restitution less than one) then the motion
would ultimately decay.

2.2. Forced vibration

Now consider the case in which the support for the system is
shaken harmonically. The equation of motion is

3€+2§wnk+wﬁx:2§wny+a)ﬁy, (1)

in which linear viscous damping has been added (¢ = c/c.),
where c. = 2mw;,. In general we will consider a lightly damped
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