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h i g h l i g h t s

• Solve full initial–boundary-value problem for thread falling under gravity.
• Determine how, eventually, the inertial terms must become important.
• Determine criteria such that surface-tension-driven pinching will not occur.
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a b s t r a c t

Despite extensive research on extensional flows, there is no complete explanation for why highly
viscous fluids extending under gravity can form such persistent and stable filaments with no sign of
destabilization from surface tension. We therefore investigate the motion of a slender axisymmetric
viscous thread that is supported at its top by a fixed horizontal surface and extends downward under
gravity. In the case in which inertia and surface tension are initially negligible, we consider the long-
wavelength equations for the full initial–boundary-value problem for a thread of arbitrary initial shape.
We show that, eventually, the accelerations in the thread become sufficiently large that the inertial terms
become important. Thus, we keep the inertial terms and, using matched asymptotic expansions, obtain
solutions for the full initial–boundary-value problem. We show that the dynamics can be divided into
two generic cases that exhibit very different behaviour. In the first case, the thread develops a long thin
region that joins together two fluidmasses. In this case,weuse order-of-magnitude estimates to show that
surface-tension-driven pinching will not occur if the square root of the Reynolds number is much greater
than the initial aspect ratio divided by the Bond number. In the second case, the thread becomes thin near
the horizontal surface. In this case, we show that the long-wavelength equations will ultimately break
down and discuss the role of inertia in determining the dynamics. The asymptotic procedures require a
number of novel techniques and the resulting solutions exhibit surprisingly rich behaviour. The solution
allows us to understand the mechanisms that underlie highly persistent filaments.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of flows of filaments represents one of the most
important problems in classical fluidmechanics.Work on this sub-
ject dates back over 100 years to the pioneers of fluid mechanics
such as Rayleigh [1] and Trouton [2]. A particularly natural prob-
lem is that of a thread of highly viscous fluid attached to a hori-
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zontal surface from below and extending under gravity. Although
this problem has received significant attention [3–9], there are still
a number of outstanding fundamental questions about such flows.
Some of these questions are highlighted in a recent review paper
by Eggers &Villermaux [10]. They describe the substantial progress
and the sometimes remarkable agreement between theory and ex-
periments for surface-tension-driven pinching of thin filaments at
high and moderate Reynolds numbers. However, in a subsection
entitled ‘Honey, why are you so thin?’, they discuss experiments
in which very viscous threads extending under gravity form ex-
traordinarily long filaments with no sign of destabilization from
surface tension. A similar phenomenon can occur in the fabrication
of glass microelectrodes [6,7]. Here, a long thin glass tube is hung
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from a support and a weight is attached to the bottom. The glass
is then heated so that the viscosity of the glass decreases and rela-
tively rapid extension occurs. If fracturing of the glass does not oc-
cur (e.g. if the glass temperature is sufficiently high), this process
can also lead to the formation of extremely long thin filaments.

Indeed, the question of whether these threads can extend
indefinitely in the absence of noise remains an open question.
In this paper, we will address the need for a quantitative theory
by developing an asymptotic theory that can solve the full
initial–boundary-value problem for a thread with arbitrary initial
shape.

We now briefly review the previous work related to the current
problem. A number of authors have considered the problem in
which inertia is completely neglected. Wilson [3] used a long-
wavelength theory to consider the extrusion of a viscous fluid
from a narrow vertical tube in the presence of gravity. His theory,
that neglects inertia, predicts that infinite accelerations occur at a
finite time, thus violating the validity of neglecting inertia. Stokes
et al. [5] considered the extension under gravity of a mass of
viscous fluid attached to the underside of a horizontal boundary.
They considered both long-wavelength theory and finite element
simulations and showed that, in the absence of inertia, infinite
accelerations will also occur. Stokes et al. [9] included the effects
of surface tension for a thread extending under gravity and paid
particular attention to the role played by surface tension near the
bottom end of the thread. Al Khatib [11] used long-wavelength
theory to study a viscoplastic thread extending under gravity.
Huang et al. [6] considered the stretching of glass tubes under
gravity with externally applied heating that significantly affects
the viscosity of the fluid. Huang et al. [7] generalized this approach
to different types of extensional forces and derived explicit
solutions that could be used to identify the factors that control
the final shape of glass microelectrodes. Kaye [4] considered
extensional flowswith inertia, but did not discuss the role of inertia
in cases in which the accelerations become large.

Although the above papers represent significant advances in
understanding extensional flows, none of them addresses the
mechanism by which inertia ultimately must become important.
Wilson [3] argued that inertia will prevent the infinite acceler-
ations that occur if inertia is completely neglected. He also ar-
gued that the minimum cross-sectional area will tend to zero as
time tends to infinity if surface tension is completely neglected.
However, inertial effects were not the main focus of Wilson’s pa-
per and the majority of the analysis is for the zero inertia case.
The role of inertia in preventing infinite accelerations is also care-
fully discussed in Eggers & Villermaux [10]. In order to further
address the question of inertial effects, Stokes & Tuck [12] used
numerical methods to solve the full initial–boundary-value prob-
lem with inertia. They obtained numerical solutions of the long-
wavelength equations and compared them with finite element
simulations of the full Navier–Stokes equations for zero surface
tension. They showed that the thread extends indefinitely, but that
computing accurate numerical solutions is very challenging due
to large gradients that develop in the solution. Bradshaw-Hajek
et al. (2007) developed a more accurate numerical method for the
long-wavelength equations and discussed the various difficulties
in computing accurate solutions for large times. In addition, these
numerical difficulties make determining when and if surface ten-
sion effects become important an extremely challenging proposi-
tion. In light of these numerical difficulties, an asymptotic solution
to this problem would certainly be valuable and this provides one
of the major motivations of this paper. We also note that Balm-
forth et al. [13] obtained numerical solutions for the dripping of
a viscoplastic thread with inertial effects and found good agree-
ment with laboratory experiments. The effects of inertia and vis-
cous heating were considered by Wylie and Huang [14].

Fig. 1. Schematic of a viscous thread extending under gravity. The left panel
represents the initial shape of the thread. The other two panels show the thread
at two later times.

In fact, despite the extensive numerical work that has been
done on this problem, there has been little analytical progress
when inertial effects are included. In a previous paper, Wylie
et al. [15] derived asymptotic solutions for the problem of a viscous
thread that is pulled at its ends by an imposed fixed force. They
showed that the solutions contain complicated internal layers. In
this paper, we use an analogous approach and show that internal
layers similar to those obtained by Wylie et al. [15] can occur. In
addition, we show that the solutions for a thread extending under
gravity exhibit new types of internal and boundary layers that
were not present in the previous paper. These new layers require
a number of novel asymptotic techniques and the structure of the
solution can be surprisingly complicated. We use this solution to
explain themechanism that underlies the persistence and stability
of long viscous threads.

In Section 2, we formulate the long-wavelength theory and
derive a particularly convenient Lagrangian form of the governing
equations. In Section 3, we completely neglect inertia and
determine the explicit solution. We show that inertia must
ultimately become important in one of two different ways. In
the first case, inertia first becomes important at a location away
from the upper boundary. In the second case, inertia first becomes
important at the upper boundary. In Sections 4 and 5, we include
the effects of inertia and determine the asymptotic solution for
the first and second cases, respectively. Finally, we summarize our
results and discuss the role of surface tension in Section 6.

2. Formulation

We consider a slender axisymmetric viscous thread that is
suspended from a horizontal upper surface (which we will refer
to as the ‘boundary’) and extends vertically downwards due to
gravity (see Fig. 1). We assume that the thread is composed
of an incompressible Newtonian fluid with density ρ, surface
tension coefficient γ , and viscosity µ. We denote time by t , the
vertical distance measured downwards from the boundary by x,
the cross-sectional area of the thread by S(x, t), the initial cross-
sectional area by S0(x), the initial length of the thread by L, and
the gravitational acceleration by g . We define the aspect ratio to
be δ =

√
⟨S0⟩/L, where

⟨S0⟩ =
1
L

 L

0
S0(x)dx. (1)
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