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h i g h l i g h t s

• Large-scale perturbations of convective dynamos are considered.
• Amplitude equations for the evolution of large-scale perturbations are derived.
• Numerical analysis of amplitude equations is performed.
• Newmechanism for generation of large-scale magnetic field by convection is found.
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a b s t r a c t

We present a new mechanism for generation of large-scale magnetic field by thermal convection which
does not involve the α-effect. We consider weakly nonlinear perturbations of space-periodic steady
convectivemagnetic dynamos in a rotating layer of incompressible electrically conducting fluid that were
identified in our previous work. The perturbations have a spatial scale in the horizontal direction that
is much larger than the period of the perturbed convective magnetohydrodynamic state. Following the
formalismof themultiscale stability theory,wehavederived the systemof amplitude equations governing
the evolution of the leading terms in the expansion of the perturbations in power series in the scale ratio.
This asymptotic analysis is more involved than in the cases considered earlier, because the kernel of the
operator of linearisation has zero-mean neutral modes whose origin lies in the spatial invariance of the
perturbed regime, the operator reduced on the generalised kernel has two Jordan normal form blocks
of size two, and simplifying symmetries of the perturbed state are now missing. Numerical results for
the amplitude equations show that a large-scale perturbation, periodic in slow horizontal variable, either
converges to a small-scale neutral stability mode with amplitudes tending to constant values, or it blows
up at a finite slow time.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental problem in astrophysics is to understand the sources of magnetic fields that are featured by many astrophysical bodies
such as the Sun and the Earth. It is generally accepted that the magnetic fields are generated by hydromagnetic processes in the melted or
fluid-like interiors of the bodies. This idea goes back to J. Larmor [1,2]. It is widely believed that the so-called α-effect plays a prominent
role in such processes. Such a mechanism of magnetic field generation was first suggested by E. Parker [3,4]. It relies on the frozenness of
magnetic field into the conductingmedium,whenmagnetic diffusion is negligible, implying that a small eddy in turbulent flowdeforms the
magnetic field force line into a loop. If this effect does not disappear when averaged over many loops, it gives rise to a mean electromotive
force (e.m.f.), which can be parallel to the mean unperturbed magnetic field and can amplify the original mean field.

The theory of mean-field electrodynamics (MFE) is developed around a similar central idea [5,6]: Suppose the flow and magnetic field
are split into the mean and fluctuating parts, and the interaction of the fluctuating parts of the flow and the field yields a non-zero mean
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e.m.f. The MFE theory postulates that, at least in the case of magnetohydrodynamic (MHD) turbulence, the latter is related to the mean
magnetic field (the coefficient of proportionality is traditionally denoted by α, and, accordingly, the phenomenon is called the ‘‘α-effect’’)
combined, in some MFE models, with the spatial gradient of the mean field.

The MFE theory does not fully justify such relations. An insight into their mathematical roots is provided by the multiscale stability
theory (MST). It treats an idealised case, inwhich turbulence ismodelled by a small-scale laminar flow, periodic in space and time (see [7]).
In contrast with MFE, mathematically rigorous results are then obtained by applying the asymptotic theory of PDE homogenisation
to the problem of linear or weakly nonlinear stability of small-scale states. Purely hydrodynamic [8,9] perturbations, the kinematic
dynamo problem [10–12] (which is an instance of the general linear MHD stability problem, where the perturbed state is amagnetic,
the flow and magnetic components of the perturbation therefore decouple, and one focuses on the magnetic perturbation), and full
perturbations of forced MHD or convective MHD states [13–16] (see also [7, Chap. 6–9]) were considered. Perturbations are supposed to
involve spatial and temporal scales that are much larger than the respective periods of the perturbed states. The perturbations are linear
combinations of amplitude-modulated small-scalemodes (i.e., eigenfunctions of the linearisationwhose periods coincidewith those of the
perturbed states) associated with the same eigenvalue. The coefficients depend exclusively on slow temporal and spatial variables. They
are usually called amplitudes, and the equations governing their dynamics are called amplitude equations. The evolution of such large-
scale perturbations is essentially controlled by the associated eigenvalue of the constituting small-scalemodes—only neutral (belonging to
the kernel of linearisation) small-scalemodes can instigate instability in the presence of large scales; consequently, MST usually focuses on
large-scale amplitudemodulation of neutral modes. Since typically small-scale neutral modes have non-zero means, amplitude equations
for large-scale perturbations of forcedMHD states (convective or not) are mean-field equations similar to those considered in MFE theory.
However, aswewill see, this is not always the case: translation-invariant physical systems, such as free thermal hydromagnetic convection
in a horizontal layer investigated in the present paper, possess zero-mean neutral small-scale stability modes. Consequently, the mean-
field description of the dynamics of large-scale perturbations of such physical systems is inadequate.

We intend to carry out a detailed investigation of stability to large-scaleweakly nonlinear perturbations of the steady and time-periodic
regimes of magnetic field generation by free thermal convection of rotating electrically conducting fluid in a horizontal layer, that were
determined numerically in [17,18]. Here we consider space-periodic convective MHD steady states constituting the branch SR18 [17]. The
group of symmetries of this steady state is generated by the symmetry about the vertical axis, x3, (note that this is not axisymmetry, see
Section 2) [17,7] and the superposition of reflection about themidplanewith translation by half a period in the horizontal direction x1. This
group of symmetries is smaller than other ones, typical for the parameter values considered ibid., and the system of amplitude equations,
derived in [7], is inapplicable for large-scale perturbations of states having this group. The symmetry about a vertical axis implies that
the steady state does not possess the α-effect. The large-scale dynamics is due to the interplay of the combined eddy diffusivity and eddy
advection.We find that their interaction cannot sustain stationary generation of large-scalemagnetic field: a large-scale perturbation from
the class which is described by the multiscale formalism either converges to a small-scale neutral stability mode, or it blows up at a finite
time.

The paper is organised as follows. In Section 2 we derive the system of amplitude equations for steady states of free hydromagnetic
convection, which have the same group of symmetries as those comprising the branch SR18 . In Section 3 we present results of numerical
analysis of the system of amplitude equations for several states belonging to this branch. Finally, we make remarks triggered by our
investigation.

2. The multiscale formalism for large-scale perturbations of free hydromagnetic convection

In this section we derive amplitude equations for large-scale perturbations of small-scale steady free hydromagnetic convection in a
horizontal layer of electrically conducting fluid rotating about the vertical axis. A field, depending only on the fast spatial variables, x, and
time, t , is called small-scale; if, in addition, the field depends on the slow horizontal spatial variables, X = ε(x1, x2) and on the slow time,
T = εst , where s ≥ 1, it is called large-scale. Wewill use asymptotic methods that are standard within theMST approach. We assume that
the perturbed state is symmetric about the vertical axis and has equal periods P in x1 and x2; further assumptions are introduced where
they become relevant.

A three-dimensional field f is called symmetric about a vertical axis passing through point (a1, a2, 0) when the following conditions
are satisfied [17,7]:

f1(a1 − x1, a2 − x2, x3) = −f1(a1 + x1, a2 + x2, x3),
f2(a1 − x1, a2 − x2, x3) = −f2(a1 + x1, a2 + x2, x3),
f3(a1 − x1, a2 − x2, x3) = f3(a1 + x1, a2 + x2, x3).

In particular, this symmetry implies that the flow is vertical everywhere on the axis. Together with the P-periodicity in the horizontal
directions, the symmetry about the Cartesian axis x3 implies that the field is also symmetric about vertical axes through points Pn/2,
where n = (n1, n2, 0) has integer components.

2.1. Small-scale convective hydromagnetic steady states and their perturbations

The state, whose stability we examine, is governed by the Navier–Stokes, magnetic induction and heat transfer equations. In the
coordinate system, co-rotating with the fluid layer about the axis x3, they are [19]

∂V/∂t =ν∇2V + V × (∇ × V)− H × (∇ × H)+ βΘe3 + τV × e3 − ∇P, (1)

∂H/∂t =η∇2H + ∇ × (V × H), (2)

∂Θ/∂t =κ∇2Θ − (V · ∇)Θ + δV3, (3)
∇ · V = ∇ · H = 0. (4)
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