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h i g h l i g h t s

• We study fronts in a model for a flow of a thin liquid film down an inclined plane.
• In a system without a surfactant, the front has no unstable spectrum.
• With a surfactant, there are regimes when the front has no unstable spectrum.
• The results are based on analytical and numerical methods.
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a b s t r a c t

We consider a model for the flow of a thin liquid film down an inclined plane in the presence of
a surfactant. The model is known to possess various families of traveling wave solutions. We use a
combination of analytical and numerical methods to study the stability of the traveling waves. We show
that for at least some of these waves the spectra of the linearization of the system about them are within
the closed left-half complex plane.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we analyze a model that describes the flow of
thin liquid film down the inclined plane, which is modified by the
presence of insoluble surfactant, and with the effects of gravity
taken into account [1,2]. Surfactants as media that stays on the
surface of a thin film flow have a variety of applications, from
industrial to medical [3–6]. Rooted in lubrication theory [1,2],
the model consists of a system of nonlinearly coupled partial
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differential equations
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where h(x, t) represents the height of the thin film, Γ (x, t)
represents the surfactant concentration at time t and x is the space
variable along the inclined plane. Parameter D is proportional to
the inverse of the Péclet number and acts as a diffusion constant of
the surfactant concentration. Péclet number measures the relative
contribution of mass transport by diffusion against mass transport
by advection. Smaller values of D, which we assume positive,
indicate the larger influence of advection, larger ones indicate the
stronger influence of the diffusion. Parameters α and β encode the
steepness of the incline: α is proportional to the sine of the angle
formed by the inclined plane with the horizontal surface, and β is
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proportional to the cosine of the same angle. This model takes into
account the Marangoni force, which is due to the modification of
the surface tension by the presence of a surfactant.

The system (1.1) is a limiting system for
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as C → 0, where C is a quantity proportional to the capillary
number. The system (1.2) is obtained from the two-dimensional
Navier–Stokes equation in [7,8,6,2] and the existence of traveling
wave solutions that connect two different constant states have
been studied in [9–11]. In [9,10], the authors consider the case
where at least one of the parameters is zero, while [11] studies
different parameter regimes when all the parameters are positive.

The stability of traveling waves very often is of critical
importance. For example, in surfactant replacement therapy a
coating of surfactant is used to support a healthy lung function [12].
The development of stable wavefronts is related to themechanism
of the surfactant delivery for the lung.

Numerical simulations performed in [10] suggest that in some
parameter regimes traveling wave solutions are stable. It is also
mentioned in [10] that the analysis of the stability of the individual
waves of (1.2) when all parameters are nonzero is of interest for
applications. In this paper we study the stability of wavefronts of
the limiting for (1.2) system (1.1). The stability of these wavefronts
will factor in the stability analysis of wavefronts in the full system
(1.2) through the multi-scale approach. The latter will be a subject
of future work.

We note that the parameter α can be normalized to be 1 in the
above equations by rescaling

x̄ = αx, t̄ = α2t,

and dropping the bars as in [11]. After this transformation, the
system (1.1) reads
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Traveling waves are sought as stationary solutions of the form
(h(ξ), Γ (ξ)), where ξ = x − st is the traveling wave coordinate,
and s is an undetermined at the moment parameter related to the
speed of the wave, so (h(ξ), Γ (ξ)) solves the following system of
ordinary differential equations
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To capture wavefronts in this system one imposes boundary-like
conditions

h(−∞) = hL, h(+∞) = hR, Γ (±∞) = 0, (1.5)

which indicate that we are interested in traveling waves that
are shaped as a front in the h-component and as a pulse in
Γ -component. With these boundary condition, integration of (1.4)
leads to
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where the derivative is taken with respect to ξ , and the quantity

K1 = −
1
3
hLhR(hL + hR) (1.7)

is the constant of integration expressed through hL and hR.
The wave speed is related to the boundary values as
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1
3
(h2
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R). (1.8)

The system (1.6) can be simplified by replacing the second
equation with a linear combination of the first and second
equations with respective coefficients −

2
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a first order system
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We assume as in [10] that
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2
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where hL and hR are the positive roots of the polynomial h3
−3sh−

3K1, which can be factored as

h3
− 3sh − 3K1 = (h − hL)(h − hR)(h + hL + hR). (1.11)

Then, the traveling wave solutions correspond to the heteroclinic
connections that asymptotically connect (h, Γ ) = (hR, 0) to (h, Γ )
= (hL, 0). An example of such heteroclinic connection, together
with the traveling wave it represents, is shown in Fig. 4.1. The
existence of continuum of such solutions (parametrized by the
maximum value of Γ ) is shown in [11] (more specifically, see
sections called Region 2, Region 4, and Region 5 in [11]). In [11],
the system (1.9) represents the reduced flow on a normally
hyperbolic invariant manifold description of which is obtained by
exploiting the multi-scale structure of the full system (1.2) when
the parameter C is small.

We point out that the line Γ = 0 is an invariant set for the flow
induced by the system (1.9), and there is an asymptotic connection
between (hL, 0) to (hR, 0) along the set Γ = 0.

The main ingredient of the stability analysis of a traveling wave
is to find the location of the spectrum of the linearization of the
pde system (1.3) about the traveling wave. The presence of spectra
with positive real parts indicates an instability as perturbations to
the wave then grow in amplitude at exponential rates. Spectrum
on the imaginary axis indicates that the perturbations may not
decay. In this paper, in Section 2 we analytically prove that the
linearization of the pde system (1.3) about the wavefront with
Γ = 0 does not have spectrum with nonnegative real parts,
with the exception of the origin. We also perform Evans function
numerical computations (Section 4) combined with energy
estimates (Section 3) which show that some of the wavefronts
with Γ ≠ 0 do not have spectrum within the closed right half of
complex plane, with the exception of the spectrum at the origin.

Let (h, Γ ) be traveling wave solutions of (1.6). The linearization
of the pde system (1.3) around the traveling wave solutions (h, Γ )
gives rise to the following eigenvalue problem
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