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• Analysis of solutal Marangoni con-
vection in the bipolar coordinate.

• A combined Cahn–Hilliard and
Navier–Stokes model with capillary
tensor.

• Repulsion or attraction is affected
by droplet radius and the Marangoni
number.
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a b s t r a c t

In the first part of this work, we analytically study themotion of two droplets driven by solutal Marangoni
convection in a bipolar coordinate. Particular solutions for the Laplace and Stokes equations are found by
applying Robin type boundary conditions for mass transfer and by utilizing continuity of stream function
and impenetrability at the surface of droplets. The solutions for the Laplace and Stokes equations are
connected by the tangential stress balance between the viscosity stress and the Marangoni stress caused
by concentration gradients. In the secondpart,wenumerically investigate themotion of twodroplets in an
immiscible fluid by solving the combined convective Cahn–Hilliard and Navier–Stokes equations, where
the capillary tensor is used to account for the Marangoni force. A significant outcome of the present work
is that the attraction or repulsion of droplets is determined by droplet radius and the Marangoni number.
In both cases, we obtain the stream lines affected by the spacing between droplets and the ratio of the
radius of the droplet.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The motion of droplets driven by solutal Marangoni convection
in an immiscible fluid is a commonly observed phenomenon in
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nature [1–4], e.g. the swimming of oil in water, and is coupled
in some phase transformation processes [5,6], e.g. the motion
of the minority liquid droplet in the continuous phase during
spinodal decomposition. The mass transport during the motion
of the droplets is induced by the surface tension gradient that
is caused by concentration gradients along the surface of the
droplet. A powerful method that is used to study this effect is a
combination of the convective Cahn–Hilliard equation with the
Navier–Stokes equation, where the mass transport is governed
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by the Cahn–Hilliard equation and the convection follows the
Navier–Stokes equation.

For low Reynolds number fluids with small Péclet number,
the Navier–Stokes equation reduces to the Stokes equation by
defining a stream function and the diffusion equation becomes
the Laplace equation. The general solutions of the Stokes and
Laplace equations in the bipolar coordinate have been found by
Stimson and Jeffery [7,8]. Based on the work of Stimson and Jeffery
and applying appropriate boundary conditions, the motion of two
droplets driven by Marangoni convection has been analytically
studied by Golovin et al. [9].

The Stokes equation is for steady state fluids where temporal
evolution of the velocity is not involved. In the context of hydro-
static equilibrium, the pressure difference across a fluid–fluid in-
terface is given by the Young–Laplace equation. For non-uniform
surface tension, the system is not in hydrostatic equilibrium any
more and the pressure distribution around the droplet evolves
with time and, in general, does not follow the Young–Laplace equa-
tion. This effect has not been considered in the analysis of Golovin
et al. and will be treated in our work. Moreover, a stress tensor (of-
ten called capillary tensor) derived from Noether’s theorem

2 ∝ (∇c)2I − ∇c ⊗ ∇c,

where I is the identity tensor and c is the molar concentration, is
proposed in Ref. [10] to be included in the Navier–Stokes equa-
tion to compute the Marangoni convection. This stress tensor or
its equivalent formats have been widely used for different setups
[11–14]. In the analysis of Golovin et al., the stress balance condi-
tion at a fluid–fluid interface was applied to solve the Laplace and
Stokes equations.When the fluid–fluid interface evolveswith time,
it would be high intricate to apply the stress balance condition at
each time step. This problem can, however, be solved by including
the capillary tensor in the Cahn–Hilliard–Navier–Stokes model.

In the first part of our investigation, we analytically study the
motion of two droplets driven by solutal Marangoni convection in
a bipolar coordinate by referring to the work of Golovin et al. [9].
The particular solutions for the Laplace and Stokes equations are
found by choosing appropriate matching conditions at the surface
of the droplets. The bridge for the Laplace and Stokes equations
is the tangential force balance between the viscosity stress and
the Marangoni force at the surface of each droplet. The isolines
for the concentration and the stream lines affected by the spacing
between droplets and by the radius of the droplets have been
investigated.

In the second part of our work, we study the motion of
the droplets by employing the combined Cahn–Hilliard and
Navier–Stokes (CHNS) equations, regarding that the analytical so-
lution is, however, for the steady state where there is no temporal
evolution for the concentration, velocity and pressure. In contrast
to the analytical model in the first part, the advantages of the CHNS
model are that (i) it captures a diffusive-physical interfacial width
in the scale of nanometer, (ii) by writing the capillary tensor as one
force term in the Navier–Stokes equation it can avoid the explicit-
application of the matching boundary conditions, e.g. stress bal-
ance, at the fluid–fluid interface, and (iii) it is more realistic since
the temporal evolution in the diffusive path is evolved. As the an-
alytical solution for the CHNS model is non-trivial, we solve the
CHNS model numerically on a staggered mesh. The most impor-
tant result we find is that whether the droplets approach or repel
each other depends on the radius of the droplet and theMarangoni
number, which has not been found in the analytical solution. This
phenomenon is explained in terms of dynamic pressure affected by
Marangoni number and the radius of the droplet. We further study
the motion of two unequally-sized droplets affected by the ratio of
their radii.

The paper is structured as follows: In Section 2, we present the
analysis. The numerical model is described in Section 3. Section 4
concerns the simulation results and discussion. The conclusion and
remarks are given in Section 5.

2. Analysis

In the analysis, we assume undeformable interface and the
droplet is in the form of a sphere or a nearly sphere. The capillary
number C := νUc/σ , where ν is the viscosity, Uc is the
characteristic velocity and σ is the interfacial tension, measures a
ratio of the viscosity force to the interfacial tension force. It is an
indicative parameter for the degree of deformation. For C ≪ 1,
the droplet stays in the form of a sphere or a nearly sphere [15].
The characteristic velocity Uc is evaluated by D/d0 where D is the
diffusivity and d0 is the capillary length. With D ∼ 1× 10−9 m2/s,
d0 ∼ 1×10−9 m, σ ∼ 0.1 J/m2 and η ∼ 1×10−3 Pa s, the capillary
number C is about 10−4, which is much less than 1. Based on this,
we study themotion of two nearly spherical droplets in the bipolar
coordinate.

2.1. Bipolar coordinate

The relation between the bipolar coordinate (ϱ, ϕ) and the
cylindrical coordinate (z, x) is defined by [16]

z + ix = iq cot

1
2
(ϕ + iϱ)


, ϕ ∈ [−π, π], ϱ ∈ (−∞,∞), (1)

where q is a positive constant. Eq. (1) yields

z =
q sinh ϱ

cosh ϱ − cosϕ
, x =

q sinϕ
cosh ϱ − cosϕ

. (2)

By eliminating ϕ in Eq. (2), we have

(z − q coth ϱ)2 + x2 =


q

sinh ϱ

2

,

which defines a circle with center at (q coth ϱ, 0) and radius
q/ sinh ϱ. For the left droplet with radius b and the right droplet
with radius a, we have

a =
q

sinhα
, b =

q
sinhβ

,

where α and β denote the surface of the right and left droplets in
the bipolar coordinate, as shown in Fig. 1. The separation distance
between the two droplets is given by

d =


q cothα −

q
sinhα


−


−q cothβ +

q
sinhβ


= a(coshα − 1)+ b(coshβ − 1).

Choosing a as the dimensionless factor for space, we get the
new relation between the bipolar coordinate and the cylindrical
coordinate

z =
sinhα sinh ϱ
cosh ϱ − cosϕ

, x =
sinhα sinϕ

cosh ϱ − cosϕ
.

The separation distance is now expressed as

d = (coshα − 1)+
b
a
(coshβ − 1).

Realizing that cosh2 α = 1+ sinh2 α, we get the following relation
between α in the bipolar coordinate and the separation distance
and the ratio of the radii

coshα =
(d + 1 + r)2 + 1 − r2

2(d + 1 + r)
,

coshβ =
(d + 1 + r)2 − 1 + r2

2r(d + 1 + r)
,

where r = b/a. In our analysis, without loss of generality, we as-
sume that the bigger droplet is the one with radius b, thus r ≥ 1.
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