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a  b  s  t  r  a  c  t

Modelling  ionic  conduction  polymeric  proton-exchange  membranes  at the  heart  of fuel  cells requires
the  solution  of highly  nonlinear  partial  differential  equations  in  very  thin  domains.  Recently,  proper
generalized  decomposition  methods  have  emerged  as  particularly  promising  methods  for  this  type  of
problems.  This  paper  introduces  the  basics  of  this  novel  class  of  approaches  and  highlights  their  potential
benefits.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Proton-exchange membranes (PEMs) are key-components of
PEMFCs, a promising class of fuel cells (FC), which use ionic conduc-
tion polymers as electrolyte between the electrocatalysts layers.
PEMs allow ion transport while preventing the passage of electrons,
a key feature of electrochemical devices in order to force electrons
to flow in the load. The membranes become ion-conductive when
they are sufficiently hydrated, allowing the flow of protons after
these have been produced at the electrochemical activity sites from
the ionization of fuels such as hydrogen and methanol. In opti-
mal  conditions the proton conductivity can reach values as high as
20 S/m at 100 ◦C, which is a fairly good value for ions, but a very poor
one if compared with the electronic conductivity in metals, being in
the order of common pure semiconductors. In order to reduce the
inherent voltage and power losses such electrolytes must be built
as thin as possible but avoiding that the manufacturing inaccuracies
produce too high relative thickness fluctuations.

Electrochemical activity sites generate current densities, which
can reach values of 104 A/m2 so that device currents in the order of
500 A require membrane cross sections of 0.2 m× 0.2 m with typical
thicknesses in the order of 2–3 × 10−4 m.  The numerical simulation
of such a domain, with aspect ratio exceeding 103, involves severe
size problems: a regular hexahedral tessellation with ten elements
in the thickness direction implies 109 nodes in the whole domain
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which can only be faced with parallel computing and multiproces-
sor computers [1].  As a further concern, depending on the transient
timescale, a large number of timesteps may  be needed in order to
accurately compute time evolutions.

1.1. Charge transport in a polymer exchange membrane

Modelling the physical problem rises a number of numerical
problems. The PEM conductivity depends on the water content of
the membrane and on its temperature according to strongly non
linear equations. In turn the water content is distributed inside the
membrane according to a diffusion equation with boundary condi-
tions which are related to the water vapor pressure at anode and
cathode faces [2].  On the other hand the temperature depends on
the membrane bulk (i.e. Joule) and boundary (i.e. electrochemical
kinetic) losses and on thermal diffusion.

Proton conducting polymers, i.e. the ionomers used as elec-
trolyte in PEMFCs, present a dielectric behavior when completely
dry, but can soak up water and when they are hydrated enough they
become conductive, allowing proton transport, i.e. ionic conduc-
tion, while preventing electron migration [3].  The most popular and
important of this class of materials is persulfonated polytetraflu-
oroethylene (PTFE, i.e. Teflon), commercially known as Nafion, a
Du Pont patent, which has a backbone structure similar to PTFE
but functionalized with sulfonic acid groups, which provide charge
sites for proton transport [2].  Protons combine with water form-
ing hydronium complexes which detach from sulfonic acid groups
moving inside the ionomer. In this way  conduction relies mainly on
the water vehicle mechanism (i.e. protons migrate being attached
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to water molecules). As a first approximation, which is valid for a
wide range of realistic operation conditions, according to experi-
mental data provided by Springer et al. [2],  proton conductivity �
can be considered a linear function of the water content. The latter
can then be expressed by the hydration �, which is the ratio of the
number of water molecules to the number of sites available for pro-
ton transport (i.e. sulfonic acid groups). The distribution of �, and
consequently of � =  ̨ · �, inside the membrane varies according to
Fick’s first law, which allows to relate conductivity to the water
molar flow N [mol/m2s] as [4]:

N = −Dwcsa

˛
∇� (1)

where Dw [m2/s] is the water diffusivity in the membrane,
csa = 1970 mol/m3 is the sulfonic acid concentration and

 ̨ = 51.93 S/m, according to the experimental data provided in
Ref. [2].  The dynamics of the water molar flow N is described by
Fick’s second law, which, expressed in terms of �, reads:

∇ · N + csa

˛

∂�

∂t
= 0 (2)

Thus, combining (1) and (2),  the equation to be solved in order to
compute the conductivity of the membrane is:

∂�

∂t
− ∇ · Dw∇� = 0 (3)

Membrane conductivity is coupled with the temperature
though a double dependence, i.e. directly and through Dw and both
are based on quantum–mechanical statistical parameters related
to the activation barriers:

�(�, T) = ˛�e(Wai/k)((1/303)−(1/T)), Dw = D0e−(Waw/kT) (4)

where k is Boltzmann’s constant, Wai is the activation barrier energy
((Wai/k) = 1268 K for ions hopping in Nafion), and D0 is a diffusiv-
ity reference value. A further difficulty is posed by the shortage of
experimental data for determining the parameters in the previous
relationship, which results in the need to run more simulations
in order to explore parameter values consistent with the available
measurements.

1.2. Numerical challenges

Computing the conductivity and current distributions is a
challenging complex multi-physics problem based on of partial
differential equations including complicated material laws. The
resulting numerical problem incurs severe issues when faced with
the finite element method and may  even be intractable when
the conventional discretization techniques are applied [5].  These
issues can be addressed through various approaches to dimension
reduction in state and parameter space. Recently, a new family of
numerical techniques, known as proper generalized decomposi-
tion (PGD) has been introduced [6,7]. They constitute an appealing
strategy for reducing the computer resources and the calculation
costs based on reducing drastically the number of degrees of free-
dom that the functional approximations involve. In fact PDG models
scale linearly with the dimension of the space in which the model
is defined instead of the exponential growth characteristic of com-
mon  mesh-based discretization strategies. PGD-type methods are
based on factorization and separation of variables. This paper is
aimed at introducing the basics of this type of approach to a sub-
set of the equations presented in Ref. [5] and to show the potential
benefits of PGD for this class of problems. With the aim of highlight-
ing the fundamental aspects of PGD, the presentation given in this

paper assumes a constant material parameter Dw, in an isothermal
membrane, which reads:

L(�) = ∂�

∂t
− Dw∇2� = 0 (5)

where L is the operator containing the time and space derivatives.

2. The PGD method applied to the 3D transient conductivity
equation

Following the PGD approach the solution to (5) is approximated
by a series of factorized terms:

� =
N+1∑
i=1

�i(x, y, z, t) =
N+1∑
i=1

Xi(x)Yi(y)Zi(z)Ti(t)

=
N∑

i=1

Xi(x)Yi(y)Zi(z)Ti(t) + Rx(x)Ry(y)Rz(z)S(t) (6)

which allow to separate the single space and time variables, using
as many terms as needed to reach the required accuracy.

Since each function depends on a single variable the prime sym-
bol (′) is used for the derivative with respect to the corresponding
variable with no risk of ambiguity.

The solution of (5) can be found with the weighted residual
approach by solving the corresponding problem∫ ∫ ∫ ∫

�∗L(�)dxdydzdt = 0 ∀�∗ (7)

Assuming that the first N terms of the series expansion of � are
known and only Rx, Ry, Rz and S have to be found, and the weight
function can be written as:

�∗ = R∗
xRyRzS + RxR∗

yRzS + RxRyR∗
zS + RxRyRzS∗ (8)

where Rx, Ry, Rz and S will be determined by an alternating simple
iteration scheme (i.e. Rx, Ry, Rz and S are computed one-by-one
cyclically assuming the remaining ones to be known), which usually
converges in a few steps, as will be shown by numerical examples.

2.1. Determination of S

Assuming that Rx, Ry and Rz are known (R∗
x = R∗

y = R∗
z = 0), after

inserting (6) and (8) in (7) the problem reduces to the determination
of S such that∫ ∫ ∫ ∫

S∗RxRyRz

(∑
XiYiZiT

′
i − Dw

∑
(

′′
X
i

+ Y ′′
i + Z ′′

i )Ti

+RxRyRzS′ − Dw(R′′
x + R′′

y + R′′
z )S

)
dxdydzdt = 0 ∀S∗ (9)

In this expression the quantities which depend on x, y and z only
can be grouped and evaluated. Defining:

˛ =
∫

R2
x dx

∫
R2

ydy

∫
R2

z dz (10)

ˇx =
∫

RxR′′
xdx

∫
Rydy

∫
Rzdz (11)

ˇy =
∫

Rxdx

∫
RyR′′

ydy

∫
Rzdz (12)

ˇz =
∫

Rxdx

∫
Rydy

∫
RzR′′

z dz (13)

�i =
∫

RxXidx

∫
RyYidy

∫
RzZidz (14)
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