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h i g h l i g h t s

• We explain amplitude dependent signal amplification factor in stochastic resonance.
• The linear response theory yields amplitude independent signal amplification factor.
• The formalism proposed takes into account infinite number of perturbation terms.
• The formalism includes the contributions due to infinite number of relaxation modes.
• Only the lowest eigenfunction and Kramers’ rate are needed to evaluate the response.
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a b s t r a c t

The response of an overdamped bistable system driven by a Gaussian white noise and perturbed by a
weak monochromatic force (signal) is studied analytically. In order to get amplitude-dependent signal
amplification factor a non-perturbative scheme is put forward by taking into account all the terms of
a perturbation series with amplitude of the signal as an expansion parameter. An approximate analytic
expression of the signal amplification factor is derived and compared with the numerical results. The
contributions of infinite number of relaxation modes of the stochastic dynamics to the response are
also taken into account in the final expression. The calculation of the response based on the derived
expression requires only the knowledge of the first non-trivial eigenvalue and the lowest eigenfunction
of the unperturbed Fokker–Planck operator.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The stochastic resonance (SR) is a phenomenon where one ob-
serves non-monotonic response of a non-equilibrated non-linear
system interacting with a large number of degrees of freedom and
perturbed by a periodic force. The noise-induced cooperative re-
sponse depends on the amplitude, A0 and the frequency,Ω of the
periodic force and the strength, D of the noisy environment in
which the system is embedded. The response is usually character-
ized in terms of signal amplification factorwhichmeasures the am-
plification of the ‘‘coherent’’ (periodic) power of the output over
the input power contained in the periodic modulation. The non-
monotonic behavior of the signal amplification factor as a function
of the noise strength exhibiting amaximum is considered as a char-
acteristic of SR. Thewhole system exhibiting SR can then be visual-
ized as a signal processing device to improve the amplification of a
weak signal and can be used to communicate a signal to a large
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distance efficiently. Besides, the interest is caused by the appli-
cations relating to the enhancement of chemical reaction rates,
the operation of biological motors, directed transport in Brown-
ian ratchets, etc. Because of these reasons the noise-assisted non-
equilibrium phenomena have been found to be of relevance in
physics, chemistry, and the life sciences [1–3].

The framework to study this stochastic problem is the Langevin
equation. Corresponding to the Langevin equation, the time
evolution of the probability distribution of this stochastic process
is described by the Fokker–Planck (FP) equation.

The exact solution of the Fokker–Planck Equation for this prob-
lem is not known. As the signal is weak, one analyzes the system in
terms of a perturbation theory with the amplitude, A0 of the signal
as an expansion parameter. The response of this nonlinear device
is thus investigated. The first term of the perturbation expansion
corresponds to the linear response while the higher order terms
in powers of the amplitude of the periodic force correspond to the
non-linear responses.

It has been possible to obtain approximate analytical expres-
sions [1,4,5] of the linear response. The non-linear SR responses
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(signal amplification factor) have been calculated [4] by solving the
Langevin equation numerically without having a recourse to the
perturbation theory.

Linear response approximation (considering only the first term
of the series) provides the signal amplification factor independent
of the amplitude of the input periodic signal while the numerical
results show that the response (signal amplification factor) does
depend on the amplitude. This suggests that in order to estimate
true response (amplitude-dependent) one should calculate the
non-linear response i.e., higher order terms in the perturbation
series. Recently it has been possible to obtain an approximate
analytic expression [6] for the leading-order non-linear response.
Complexity grows for the calculation of the next to leading
order (NLO) and the next-to next leading order (NNLO) non-
linear response analytically. It is observed that the successive
terms (NLO, NNLO) although appear with alternate signs but the
coefficients, fac j(Ω,D) of the derived expression of the response,

j


A0
D

j
fac j(Ω,D) are not sufficiently small to annul the large

enhancement due to the factor


A0
D

j
. How many terms one

would retain in the perturbation series to have a reasonable finite
response is not known. Thus the usual method of perturbation
approach by truncating the series fails in this case. One wonders
while considering the full perturbation series to estimate the
non-linear response even with moderately low amplitude of the
signal these oscillations would be violent for higher and higher
order terms and how these terms cancel in a subtle way to
arrive at a finite response [4,7]. This difficulty motivates us to
put forward a new method to calculate the amplitude-dependent
signal amplification factor in a non-perturbative way taking into
account the infinite number of terms of the perturbation series.

As has been stated before, the difficulty to handle the higher or-
der terms of the series grows enormously. One is therefore forced
to look for an approximate approach to manage the terms effi-
ciently as far as possible. In this present paperwedevelop a scheme
to derive the non-perturbative response analytically taking into
account the infinite number of terms of the perturbation series.
The stochastic dynamics depends on the infinite number of re-
laxation modes for the problem considered in this manuscript.
These modes are characterized by the eigenvalues of the un-
perturbed Fokker–Planck operator. The response is calculated in
this manuscript taking into account

(i) infinite number of terms of the perturbation series and
(ii) the contributions arising from infinite number of relaxation

modes.

It is thus easily envisaged that the task is highly non-trivial. To
begin with, in order to carry out this program we largely appeal to
simplicity by restricting a suitable domain of the parameter regime
(A0,Ω,D). Further, throughout the derivation we always ignore
quantities which are of higher order smallness compared to the
accounted terms.

The paper is organized as follows. We state the problem briefly
in Section 2. The interaction of the input monochromatic signal
with the un-perturbed stochastic system generates harmonics of
the signal frequency at the output. This is exhibited in Eq. (2.9).
In this manuscript we calculate the signal amplification factor of
a monochromatic periodic signal which is considered as a quanti-
fier of stochastic resonance. It is defined as the ratio of the signal
power at the output to that at the input and it is given by Eq. (2.14).

As the power contained in the input monochromatic signal is A20
2 ,

hence C̄coh(Ω,D, A0) in Eq. (2.13) is a measure of the power at the
output. This implies that ⟨φ

Ď
0 |x|C1(µ = 0)⟩ (with φĎ

0(x) = 1 and
C1(x;µ = 0) being the magnitude of the fundamental present in

the asymptotic probability distribution, Eq. (2.9)) in Eq. (2.13) is
the effective amplitude of the signal at the output. Since we are
taking into account infinite number of terms of the perturbation
series, the quantity, C1(x;µ = 0) is expressed as a series with its
different orders in Eq. (3.13) where the amplitude A0 is an expan-
sion parameter. We calculate the amplitude through spectral de-
composition of C1(x;µ = 0) with respect to the complete set of
eigenfunctions of the un-perturbed Fokker–Planck operator. The
spectral decomposition of different orders of C1 shows that the
spectral component of a given order of C1 is related to the vari-
ous spectral components of lower order of C1 and the third har-
monic component, C3. This is obtained as the infinite hierarchial
system of equations in Eq. (3.14). This set of equations explicitly
demonstrates that in all orders of perturbation one has to take into
account the contributions arising fromall the infinite number of re-
laxationmodes of the stochastic process.We solve this hierarchy of
the spectral components to calculate the amplitude at the output in
Eq. (3.16). In order to solve this hierarchy analytically we restrict
the domain of the parameters, (A0,Ω,D) of this problem where
Eqs. (3.17)–(3.19) hold. This would help us to write this hierarchy
in a compact form given in Eq. (3.24). These are presented in Sec-
tion 3. We next solve this hierarchy in two steps. It is seen that this
infinite set of hierarchy involves the spectral components of C1 and
C3. In Section 4 we solve this hierarchy ignoring the contribution
due to third harmonic and obtain the solution of the spectral com-
ponents of C1 and the corresponding resonance amplitude in Eqs.
(4.8) and (4.19) respectively. We call them as (1)⟨φĎ

m|C (2k+1)
1 (µ =

0)⟩ and (1)⟨φĎ
0 |x|C1(µ = 0)⟩ for convenience. In Section 5 we solve

this hierarchy including the contribution due to third harmonic
and obtain the resonance amplitude, Eq. (5.14) as a series, where
each term of the series can be evaluated with the knowledge of the
solution obtained in Eq. (4.8). To demonstrate the validity of the so-
lution of the resonance amplitude, Eq. (5.14) we evaluate two typ-
ical string of infinite number of perturbation terms in Sections 5.1
and 5.2 respectively. Using Eqs. (2.13)–(2.14) we evaluate approx-
imate signal amplification factor for the two typical amplitudes of
the input signal, namely A0 = 0.1 and A0 = 0.2, and compare the
analytical results with the numerical values available in the litera-
ture in Figs. 3 and 4. For both the cases the amplitude-dependent
response show a non-monotonic behavior exhibiting a maximum
(the characteristic feature of SR) as in thenumerical observation. As
the truncation of the usual perturbation series is avoided, the finite
amplitude-dependent signal amplification factor is achieved in this
non-perturbative approach. Finally some concluding remarks are
added in Section 6.

As infinite number of terms in the perturbation series and
the contributions from infinite number of relaxation modes are
considered in this approach, the derivation becomes non-trivial
and the expression of the response amplitude is somewhat
involved. Nevertheless the evaluation of the non-linear response
amplitude or the corresponding signal amplification factor needs
only the knowledge of the lowest eigenfunction and the first
nontrivial eigenvalue of the un-perturbed FP operator. Necessary
steps to arrive at the final result are proved in the appendices.

2. Statement of the problem

The Langevin equation describing the overdamped Brownian
motion of a particle in a bistable potential V (x), driven by a
Gaussian white noise and perturbed by a weak monochromatic
force A0 cos(Ωt) (the input signal), is given by

ẋ = −V ′(x)+ A0 cos(Ωt)+ Γ (t). (2.1)

The bistable potential V (x) used in Eq. (2.1) is

V (x) = −
1
2
x2 +

1
4
x4, (2.2)
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