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a b s t r a c t

In this work we introduce a 2D minimal model of random scale-invariant network structures embedded
in a matrix to study the influence of microscopic architecture elements on the viscoelastic behavior of
soft biological tissue. Viscoelastic properties at a microscale are modeled by a cohort of basic elements
with varying complexity integrated intomulti-hierarchic lattice obeying self-similar geometry. It is found
that this hierarchy of structure elements yields a global nonlinear frequency dependent complex-valued
shear modulus. In the dynamic range of external frequency load, the modeled shear modulus proved
sensitive to the network concentration and viscoelastic characteristics of basic elements. The proposed
model provides a theoretical framework for the interpretation of dynamic viscoelastic parameters in the
context of microstructural variations under different conditions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic elastography can non-invasively measure the distri-
bution of viscoelastic constants in biological soft tissues [1,2].
Time-harmonic dynamic stimuli of body tissue are primarily used
by magnetic resonance elastography (MRE) for the measurement
of the complex shearmodulus G∗ and its dispersion-relation to fre-
quency [3,4]. There is growing evidence that G∗ measured by elas-
tography is sensitive to the tissue’s architecture on multiple scales
from single-cell rigidity up to larger tissue building blocks and their
engagement into the macroscopic morphology of organs and tis-
sues [5–8].

The mathematical description of microscopically heteroge-
neous media, such as biological tissue, is challenging. First, solving
equations with spatially distributed parameters is generally diffi-
cult. Second, andmost importantly, it is usually impossible to even
specify the constitutive equations based on the precise geometric
configuration of the viscoelastic network. Even if local solutions to
the constitutive equations can be found, the high number of free
parameters would render such a solution impractical. Instead, the
description of tissue viscoelasticity on a statistical basis might bet-
ter remodel the origin of the signal in elastography.
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In a previous study, we used a multi-scale effective-medium
model inspired by random micro-structures in soft biological tis-
sues to analyze the viscoelasticity parameter dispersion observed
in biorheology and elastography [9]. Our current work expands
this theoretical framework on different local constitutive models
to provide a link between the macroscopical viscoelastic proper-
ties [10–13] to viscoelastic constants and network geometry on the
microscale.

The theoretical fundamentals of our approach were originally
developed to describe effective physical properties in disordered
media (see, for example, [14–16]). Adopting thesemethods, we as-
sume that randomness is presented throughout all scales of tissue
structure. Although tissues are clearly not randomly organized (e.g.
brain,muscle), the topology of their viscoelastic elements (connec-
tive tissue immersed in the body fluids) can be considered ran-
dom with respect to specific positions and local properties. The
principle of local randomness at multiple scales implies the appli-
cability of mathematical methods within the realm of self-similar
geometries.

In this study, a general coarse-graining (CG) multi-scale ap-
proach is used to integrate basic viscoelastic elements (BE), namely
the Voigt and Maxwell; fractional springpot and fractional Voigt;
generalized Maxwell and standard linear solid into self-similar
networks, and the global viscoelastic response of the effective
medium was analyzed. Therewith we aim to predict results of dy-
namic elastography and to provide an interconnection between
effective-medium viscoelastic constants and structure-related
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parameters such as network density and small-scale basic matrix
properties.

2. Physical model of viscoelasticity

The complexity of the microscopic structure of biological
tissues given by the heterogeneity of viscoelastic properties and
geometrical irregularity of the mechanical network results in
nonlinear constitutive laws and nontrivial dynamics. Still, the local
relationship between the tensors of stress σfk and strain εfk is given
by Hook’s law [17]

σfk = G∗

ω, r⃗


εfk, (1)

where the real-valued elastic modulus was transformed to the
complex-valued G∗ according to principles of correspondences:

G∗

ω, r⃗


= G′


ω, r⃗


+ i G′′


ω, r⃗


. (2)

G′

ω, r⃗


and G′′


ω, r⃗


denote the storage and loss moduli,

respectively, with ω and r⃗ being the angular drive frequency and
the position vector.

A fundamental question is how specific complexity features
manifest themselves in the global dispersive dynamics. Studying
dispersive viscoelasticity therefore, is a way to characterize the
type of structural disorder of network in a composite sample.
Here we consider a class of viscoelasticity, caused by extended
networks which regulate the stiffness of biological tissue, and the
possibility of elastic wave propagation. Networks can introduce
significant long-range correlations into the biological sample.
These correlations give rise to distinct viscoelastic features,
qualitatively different from those due to short-range disorder,
which is a default assumption in the traditional models of small
perturbations [18].

We assume that the external stationary shear load is periodi-
cally applied along one border surface and zero displacement on
the opposite side is considered. The load is characterized by a fre-
quency ω = 2π/T with period of motion T . The balance of all
forces in the vicinity of the location r⃗ , and in the absence of ex-
ternal body forces, assumes a conservation law [19] which may
be solved by numerical methods if boundary condition and ma-
terial constants are known. If we introduce a regular square mesh
to a set of nodes


r⃗k

, located in 2D Euclidean space at distances

a =
r⃗l − r⃗m

, a = const andwith (lm) chosen as closest neighbors,
then the conservation law expressed in finite differences yields a
system of linear equations of displacements ul = u


r⃗l

at nodes r⃗l:

G · u⃗ = c⃗. (3)

c⃗ denotes the external force which is zero but on the boundary,
u⃗ = (u1, . . . , ul, . . . , um, . . . , uN)∗ is a vector-column of displace-
ments. Eq. (3) in a bra-and-ket notation [20] may be expressed as

u⃗ =


m=1,N

|1m⟩ um (4)

and

G =


l,m=1,N

|1l⟩ ⊗ ⟨1m|


δlm

z
k=1

G∗

(lk) − G∗

(lm)


, (5)

where δlm is the Kronecker delta and ⊗ denotes the outer prod-
uct. In Eq. (5) G∗

(lm) is the shear modulus of viscoelastic element be-
tween the closest nodes l and m. We define the node coordination
number, z, as the number of links involved in the node, which is
e.g. in a regular square mesh z = 4 for bulk nodes and z = 3 for

surface nodes. N is the number of nodes within the lattice exclud-
ing boundaries. In Eqs. (4), (5) orthonormal properties for the basis
bra-and-ket functions are taken into account.

The distribution of displacements at nodes in a randomnetwork
may be due to both global external and local internal fields [21]
where the first increases the displacements regularly by a constant
amount per row of nodes, while the second imposes random
displacements whose average over significantly large regions
converges to zero. Thus a solution of (3) can be found as

u⃗ = G−1
· c⃗ (6)

with G split into regular and irregular parts as G = Greg − Girreg.
Factoring out Greg we obtain:

G = Greg

I − G−1

reg · Girreg

, (7)

with I being the unit matrix. Suppose that shear modulus of the
uniform medium characterized by Greg is G∗,eff. Then the bra-and-
ket notation of G in a closest neighbor approximation gives:

Greg =


l,m=1,N

|1l⟩ ⊗ ⟨1m|G∗,eff (zδlm − (1 − δlm) ∆lm) , (8)

where ∆lm = {0, 1} (if nodes l and m are nearest neighbors ∆lm =

1, otherwise ∆lm = 0) and

Girreg =


l,m=1,N


G∗,eff

− G∗

(lm)


(|1l⟩ − |1m⟩) ⊗ (⟨1l| − ⟨1m|) . (9)

In Eq. (9) only not paired terms, e.g. |1l⟩⊗ ⟨1m| with l ≠ m, give
contribution to exclude self-coupled effects.

If fluctuations of irregular displacements are small and the
matrix norm satisfies

G−1
reg · Girreg

 < 1 the series expansion for
evaluation of G−1 can be represented as:

G−1
= G−1

reg

 
n=0,∞


G−1
regGirreg

n . (10)

From (7) and (10) we see that

G−1


is given by G−1

reg with
corrections and the optimal choice of G∗,eff can be done only if
Girreg


= 0, (11)

where spatial averaging ⟨. . .⟩ is performed over a large region of a
sample of size L.

For large fluctuations the condition of expansion (10) is vio-
lated. In this case we assume a scale hierarchy in irregular part,
Girreg, and perform a sequence of scale averages to achieve con-
dition Eq. (11) with best fitted G∗,eff. After a number of coarse-
graining steps:
Girreg


l1

> · · · >

Girreg


lk

> · · · >

Girreg


ln

→ 0, (12)

where lk is a current k-th scale within the sample for averaging and
L > · · · > lk > · · · > l1 > a.

Such an approach defines a multiscale effective medium
approximation to represent the average effects of the randomly
built network. Thus, according to our hypothesis, the extra field
fluctuations possess scaling properties and tend to zero after a
number of averages depending on the network concentration. The
mathematical technique of successive scale by scale averaging on
the basis of recurrent laws is discussed below.

Suppose that for a local link binary probability density function,
we can use [22]

ρ

G∗

(lm)


= pδ


G∗

(lm) − G(1)
+ (1 − p) δ


G∗

(lm) − G(2) , (13)

as appropriate to the random network models. G(1) is a local
network parameter andG(2) is a parameter characterizing amatrix,
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