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h i g h l i g h t s

• The Kuramoto model with a bi-harmonic coupling function was investigated.
• We develop a method for an analytic solution of self-consistent equations.
• We observed a multi-branch locking with a multiplicity of coherent states.
• Multi-branch synchronous states coexist with neutrally stable asynchronous regime.
• We show that the asynchronous state has a finite life time for finite ensembles.
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a b s t r a c t

We study synchronization in a Kuramoto model of globally coupled phase oscillators with a bi-harmonic
coupling function, in the thermodynamic limit of large populations. We develop a method for an analytic
solution of self-consistent equations describing uniformly rotating complex order parameters, both
for single-branch (one possible state of locked oscillators) and multi-branch (two possible values of
locked phases) entrainment. We show that synchronous states coexist with the neutrally linearly stable
asynchronous regime. The latter has a finite life time for finite ensembles, this time grows with the
ensemble size as a power law.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Large systems of coupled nonidentical oscillators are of gen-
eral interest in various branches of science. They describe Joseph-
son junction circuits [1–3], electrochemical [4] and spin-torque
[5,6] oscillators, as well as variety of interdisciplinary applications
including pedestrian induced oscillations of footbridges [7], ap-
plauding persons [8], and others. Similar models are also used in
biology, for example in studying of neural ensembles dynamics
[9,10] and systemsdescribing circadian clocks inmammals [11,12].
In many cases the analysis of large ensembles consisting of het-
erogeneous oscillators can be successfully performed in the phase
approximation [13,14]. Indeed, if the interaction between the el-
ements is weak, the amplitudes are enslaved, and the dynamics
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of self-sustained oscillators can be effectively described by a rela-
tively simple system of coupled phase equations. The special case
of a globally coupled network of phase oscillators (so-called Ku-
ramotomodel [13,15]) attracted a lot of attention [16] andhas been
established as a paradigmatic model describing transitions from
incoherent to synchronous states in the ensembles of coupled os-
cillators.

Quite a complete analysis of the Kuramoto model can be
performed in the case of a harmonic sin-coupling function
[13,17,18], although even here non-trivial scenarios of transition to
synchrony have been reported [19]. Less studied is the case ofmore
general coupling functions, containing many harmonics. Here we
perform a systematic study of the synchronous regimes for a bi-
harmonic coupling function (see [20] for a short presentation
of these results which have been later confirmed in [21]). We
introduce the model and discuss previous findings in Section 2.
Then in Section 3 we give a general solution of the self-consistent
equations describing rotating-wave synchronous solutions. In
Section 4 we give a detailed analysis of the simplest symmetric
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case (no phase shifts in the coupling), while a general situation
is illustrated in Section 5. In conclusion, we summarize the
results and outline open questions. In this paper we focus on the
deterministic oscillator dynamics, the case of noisy oscillators will
be considered elsewhere [22].

2. Kuramoto model and bi-harmonic coupling

The general Kuramoto model is formulated as a system of
differential equations for the phases ϕk of N oscillators:

ϕ̇k = ωk +
1
N

N
n=1

Γ (ϕn − ϕk), k = 1, . . . ,N. (1)

All the oscillators are identical, except for diversity of the natural
frequencies ωk, distributed according to a certain distribution
function g(ω). The level of coherence in the network of phase
oscillators can be described by order parameters Rn, defined as:

RneiΘn =
1
N

N
k=1

einϕk , n ∈ N. (2)

The state with Rn = 0 for all n corresponds to a purely incoherent
dynamics (uniform distribution of the phases), while non-zero
values of at least some order parameters indicate for certain
synchrony in the ensemble. In the case of pure sinusoidal coupling,
Γ (x) = ε sin(x + α), the original analysis by Kuramoto [15,
13] and its subsequent extensions [23–25,17,18] revealed a clear
picture of a transition from an asynchronous state to coherence
in the thermodynamical limit N → ∞. It was shown that
above certain critical value of the coupling (ε > εc), the system
undergoes a transition from disordered behavior to synchronous
collective motion via a supercritical bifurcation with the main
order parameter obeying R1 ∼ (ε − εc)

1
2 .

The situation is much less trivial for more general coupling
functionsΓ . The presence of higher harmonics in coupling function
[26,24,25,27] may change scaling of the order parameter to linear
law R1 ∼ ε − εc . Moreover, as has been already mentioned
in an early paper by Winfree [28] and in subsequent numerical
studies by Daido in [29,30], sufficiently strong higher modes
in the coupling function Γ may cause a so-called multibranch
entrainment, in which a huge number of stable or multistable
phase-locked states exist. In certain cases the interplay between
synchronizing action of one coupling mode and repelling force
from another one can be a reason for an oscillatory behavior of
macroscopic order parameters [31].

This paper is devoted to a systematic study of the Kuramoto
model in the case of a general bi-harmonic coupling function

Γ (x) = ε sin(x − β1)+ γ sin(2x − β2) (3)

in the thermodynamic limit N → ∞. In Section 3 we formulate
an analytic self-consistent approach [15,13,32] which allows us
to calculate stationary or uniformly rotating order parameters
R1,2 (including all possible multi-branch entrainment states)
depending on the parameters of the bi-harmonic coupling function
Γ . Based on the self-consistent method, we present in Section 4
a complete diagram of uniformly rotating states with constant
order parameters, for a special case of symmetric coupling function
Γ (β1,2 = 0). Surprisingly, (i) synchronous solutions appear
prior to the stability threshold of incoherent state; (ii) these
regimes have order parameters that can take values anywhere
in the range (0, Rmax] for some Rmax < 1; (iii) there is a huge
multiplicity of these states for fixed coupling parameters (multi-
branch entrainment) which can also appear for relatively weak
second mode (when parameter γ is small compared to absolute
value of ε) in the coupling. Here we also illustrate the multiplicity

of solutions, and, combining the self-consistent approach and a
perturbative analysis, we derive the scaling laws of R1,2(ε, γ ) near
the transition points where coherent state appears.

For a general case of non-zero phase shifts β1,2, consideration
of the self-consistent equations becomes rather tedious due to a
large number of parameters involved. We restrict our attention in
Section 5 to several examples with multibranch entrainment and
already mentioned oscillatory states [31].

Before proceeding with the analysis, we mention three exam-
ples of realistic physical systemswhere the second harmonics term
in the coupling function is strong or even dominating. The first ex-
ample is the classical Huygens’ setup with pendulum clocks sus-
pended on a common beam (common platform). The horizontal
displacement of the beam leads to the first harmonics coupling
∼ ε, while the vertical mode produces the second harmonics term
∼ γ [33]. We give a derivation of the phase equations for the case
where both horizontal and vertical displacements of the platform
are present, in Appendix, where Eq. (32) is in fact the Kuramoto
model with bi-harmonic coupling. Another example are recently
experimentally realized ϕ-Josephson junctions [34], where the dy-
namics of a single junction in the array is governed by a double-
well energy potential. Therefore one can expect strong effects
caused by the second harmonics in the interaction. The third ex-
ample are experiments with globally coupled electrochemical os-
cillators [35,36], where a pronounced second harmonics has been
observed in the coupling function inferred from the experimental
data.

3. Self-consistent equations and their solution

We start our analysis with reformulation of Eq. (1) for the bi-
harmonic coupling as

ϕ̇k = ωk + εIm


e−iβ1−iϕk

1
N


n

eiϕn


+ γ Im


e−iβ2−i2ϕk

1
N


n

ei2ϕn

.

In the thermodynamical limit, using the two relevant order
parameters R1,2eiΘ1,2 , defined according to (2), we obtain:

ϕ̇ = ω + εR1 sin(Θ1 − ϕ − β1)+ γ R2 sin(Θ2 − 2ϕ − β2). (4)

We assume the natural frequencies ω to be distributed according
to a symmetric unimodal density g(ω). Furthermore, due to
rotational invariance of the problem, the mean frequency can be
set to zero by virtue of a transformation into a rotating reference
frame. In the thermodynamic limit the complex order parameters
RmeiΘm can be represented using the conditional distribution
function ρ(ϕ|ω):

RmeiΘm =


dϕdω g(ω)ρ(ϕ|ω)eimϕ, m = 1, 2. (5)

Below we consider only the states of uniformly rotating
order parameters. Let us perform the following transformation of
variables to the rotating (with some frequencyΩ) reference frame:

Θ1 = Ωt + θ1; Θ2 = 2Ωt + θ2;

ϕ = Ωt + θ1 − β1 + ψ,
(6)

where θ1 and θ2 are constants. Then Eq. (4) changes as follows:

ψ̇ = ω −Ω + εR1 sin(−ψ)

+ γ R2 sin(θ2 − 2θ1 + 2β1 − β2 − 2ψ). (7)
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