ASYMPTOTIC FORMULAE FOR THE BLOCH EIGENVALUES NEAR PLANES OF DIFFRACTION

O. A. Veliev
Department of Mathematics, Faculty of Arts and Sciences, Dogus University, Acibadem, Kadikoy, Istanbul, Turkey (e-mail: oveliev@dogus.edu.tr)

(Received February 28, 2006 - Revised September 6, 2006)

Abstract

In this paper we obtain asymptotic formulae of arbitrary order for the Bloch eigenvalue of the periodic Schrödinger operator $-\Delta+q(x)$, of arbitrary dimension, when the corresponding quasi-momentum lies near planes of diffraction.

Keywords: Bloch eigenvalue, Schrödinger operator, perturbation.

1. Introduction

In this paper we consider the operator

$$
\begin{equation*}
L(q)=-\Delta+q(x), \quad x \in \mathbb{R}^{d}, \quad d \geq 2 \tag{1}
\end{equation*}
$$

with a periodic (relative to a lattice Ω) potential $q(x) \in W_{2}^{s}(F)$, where

$$
s \geq \frac{1}{2} d^{2}+6 d+4, \quad F \equiv \mathbb{R}^{d} / \Omega
$$

is a fundamental domain of Ω. Without loss of generality it can be assumed that the measure $\mu(F)$ of F is 1 and $\int_{F} q(x) d x=0$. Let $L_{f}(q(x))$ be the operator generated in F by (1) and the conditions

$$
u(x+\omega)=e^{i(t, \omega)} u(x), \quad \forall \omega \in \Omega
$$

where $t \in F^{*} \equiv \mathbb{R}^{d} / \Gamma$ and Γ is the lattice dual to Ω, that is, Γ is the set of all vectors $\gamma \in \mathbb{R}^{d}$ satisfying $(\gamma, \omega) \in 2 \pi \mathbb{Z}$ for all $\omega \in \Omega$. It is well known that (see [1]) the spectrum of the operator $L_{t}(q)$ consists of the eigenvalues $\Lambda_{n}(t)$ ($n=1,2, \ldots$) corresponding to the Bloch functions $\Psi_{n, t}(x)$:

$$
\begin{equation*}
L_{t}(q) \Psi_{n, t}(x)=\Lambda_{n}(t) \Psi_{n, t}(x) \tag{2}
\end{equation*}
$$

In the case $q(x)=0$ these eigenvalues and eigenfunctions are $|\gamma+t|^{2}$ and $e^{i(\gamma+t, x)}$ for $\gamma \in \Gamma$:

$$
\begin{equation*}
L_{t}(0) e^{i(\gamma+t, x)}=|\gamma+t|^{2} e^{i(\gamma+t, x)} \tag{3}
\end{equation*}
$$

In [5-9] for the first time the eigenvalues $|\gamma+t|^{2}$, for big $\gamma \in \Gamma$, were divided into two groups: non-resonance ones (roughly speaking, if $\gamma+t$ is far from the
diffraction planes) and resonance ones (if $\gamma+t$ is near a diffraction plane) and for the perturbations of each group various asymptotic formulae were obtained. To give the precise definition of the non-resonance and resonance eigenvalue $|\gamma+t|^{2}$ of order ρ^{2} (written as $|\gamma+t|^{2} \sim \rho^{2}$, for definiteness suppose $\gamma+t \in R\left(\frac{3}{2} \rho\right) \backslash R\left(\frac{1}{2} \rho\right)$), where $R(\rho)=\left\{x \in \mathbb{R}^{d}:|x|<\rho\right\}$) for a big parameter ρ we write the potential $q(x) \in W_{2}^{s}(F)$ in the form

$$
\begin{equation*}
q(x)=\sum_{\gamma_{1} \in \Gamma\left(\rho^{\alpha}\right)} q_{\gamma_{1}} e^{i\left(\gamma_{1}, x\right)}+O\left(\rho^{-p \alpha}\right) \tag{4}
\end{equation*}
$$

where

$$
p=s-d, \quad \alpha=\frac{1}{d+11}, \quad q_{\gamma}=\left(q(x), e^{i(\gamma, x)}\right)=\int_{F} q(x) e^{-i(\gamma, x)} d x
$$

$\left.\Gamma\left(\rho^{\alpha}\right)=\left\{\gamma \in \Gamma: 0<|\gamma|<\rho^{\alpha}\right)\right\}$, and the relation $|\gamma+t|^{2} \sim \rho^{2}$ means that there exist constants c_{1} and c_{2} such that $c_{1} \rho<|\gamma+t|<c_{2} \rho$ (here and in subsequent relations we denote by $c_{i}(i=1,2, \ldots)$ the positive, independent of ρ constants whose exact values are inessential). Note that $q(x) \in W_{2}^{s}(F)$ means that $\sum_{\gamma}\left|q_{\gamma}\right|^{2}\left(1+|\gamma|^{2 s}\right)<\infty$. If $s \geq d$, then

$$
\begin{equation*}
\sum_{\gamma}\left|q_{\gamma}\right|<c_{3}, \quad \sup \left|\sum_{\gamma \notin \Gamma\left(\rho^{\alpha}\right)} q_{\gamma} e^{i(\gamma, x)}\right| \leq \sum_{|\gamma| \geq \rho^{\alpha}}\left|q_{\gamma}\right|=O\left(\rho^{-p \alpha}\right), \tag{5}
\end{equation*}
$$

i.e. (4) holds. It follows from (5) that the influence of $\sum_{\gamma \notin \Gamma\left(\rho^{\alpha}\right)} q_{\gamma} e^{i(\gamma, x)}$ on the eigenvalue $|\gamma+t|^{2}$ is $O\left(\rho^{-p \alpha}\right)$. In [7-9] in order to observe the influence of the trigonometric polynomial $P(x)=\sum_{\gamma \in \Gamma\left(\rho^{\alpha}\right)} q_{\gamma} e^{i(\gamma, x)}$ on the eigenvalue $|\gamma+t|^{2}$ we used the formula

$$
\begin{equation*}
\left(\Lambda_{N}-|\gamma+t|^{2}\right) b(N, \gamma)=\left(\Psi_{N, t}(x) q(x), e^{i(\gamma+t, x)}\right) \tag{6}
\end{equation*}
$$

where $b(N, \gamma)=\left(\Psi_{N, t}(x), e^{i(\gamma+t, x)}\right)$, which is obtained from Eq. (2) by multiplying by $e^{i(\gamma+t, x)}$ and using (3). We say that (6) is the binding formulae for $L_{t}(q)$ and $L_{t}(0)$, since it connects the eigenvalues and eigenfunctions of $L_{t}(q)$ and $L_{t}(0)$. Introducing the expansion (4) of $q(x)$ into (6) we get

$$
\begin{equation*}
\left(\Lambda_{N}-|\gamma+t|^{2}\right) b(N, \gamma)=\sum_{\gamma_{1} \in \Gamma\left(\rho^{\alpha}\right)} q_{\gamma_{1}} b\left(N, \gamma-\gamma_{1}\right)+O\left(\rho^{-p \alpha}\right) \tag{7}
\end{equation*}
$$

If Λ_{N} is close to $|\gamma+t|^{2}$ and $\gamma+t$ does not belong to any of the sets

$$
\begin{equation*}
V_{\gamma_{1}}\left(\rho^{\alpha_{1}}\right) \equiv\left\{x \in \mathbb{R}^{d}:\left||x|^{2}-\left|x+\gamma_{1}\right|^{2}\right|<\rho^{\alpha_{1}}\right\} \cap(R(3 \rho / 2) \backslash R(\rho / 2)) \tag{8}
\end{equation*}
$$

for $\gamma_{1} \in \Gamma\left(\rho^{\alpha}\right)$, where $\alpha_{1}=3 \alpha$, that is, $\gamma+t$ are far from the diffraction planes $\left\{x \in \mathbb{R}^{d}:|x|^{2}-\left|x+\gamma_{1}\right|^{2}=0\right\}$ for $\gamma_{1} \in \Gamma\left(\rho^{\alpha}\right)$, then

$$
\begin{equation*}
\left||\gamma+t|^{2}-\left|\gamma-\gamma_{1}+t\right|^{2}\right| \geq \rho^{\alpha_{1}}, \quad\left|\Lambda_{N}-\left|\gamma-\gamma_{1}+t\right|^{2}\right|>\frac{1}{2} \rho^{\alpha_{1}} \tag{9}
\end{equation*}
$$

https://daneshyari.com/en/article/1899532

Download Persian Version:
https://daneshyari.com/article/1899532

Daneshyari.com

