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h i g h l i g h t s

• Interpolation methods for velocity fields are principal connections.
• The horizontal Lagrange–Poincaré equations yield particle methods for fluids.
• Higher-order interpolation methods are derived by higher-order isotropy subgroups.
• Higher-order isotropy groups yield finite-dimensional circulation theorems.
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a b s t r a c t

In this paper, we present finite-dimensional particle-based models for fluids which respect a number of
geometric properties of the Euler equations of motion. Specifically, we use Lagrange–Poincaré reduction
to understand the coupling between a fluid and a set of Lagrangian particles that are supposed to simulate
it. We substitute the use of principal connections in Cendra et al. (2001) [13] with vector field valued
interpolations from particle velocity data. The consequence of writing evolution equations in terms of
interpolation is two-fold. First, it provides estimates on the error incurred when interpolation is used
to derive the evolution of the system. Second, this form of the equations of motion can inspire a family
of particle and hybrid particle–spectral methods, where the error analysis is ‘‘built in’’. We also discuss
the influence of other parameters attached to the particles, such as shape, orientation, or higher-order
deformations, and how they can help us achieve a particle-centric version of Kelvin’s circulation theorem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Particles are capable of carrying a variety of information such
as position, shape, and orientation. Moreover, when this data is
described with finitely many numbers, we may consider including
it as input for a computer simulation. Given this point of view on
particles, we seek to understand, from a geometric perspective,
how a set of Lagrangian particles can be used as a computational
device to numerically simulate an ideal fluid. We will explore
this idea by applying Lagrange–Poincaré reduction to the exact
equations of motion. The horizontal Lagrange–Poincaré equation
can be used to inspire a family of particle methods. Specifically,
given an ideal, homogeneous, inviscid, incompressible fluid on a
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Riemannian manifold M with smooth boundary ∂M , oriented by
the associated Riemannian volume, the configuration space may
be described by the group of volume-preserving diffeomorphisms,
SDiff(M), and the exact equations of motion for an ideal fluid
are the L2-geodesic equations as described in [1]. Throughout the
paper we shall assume that there is a Hodge decomposition; for
compact boundaryless manifolds, this is standard (see, e.g., [2]);
for compact manifolds with a boundary, this holds in the case of
∂-manifolds (i.e., the manifold is, in addition, complete as a metric
space; see [3]); for non-compact manifolds, this holds in function
spaces with enough decay at infinity (for Rn, see, e.g., [4–6]; and if
the manifold has a boundary, see [3]).

If⊙ is an N-tuple of distinct points inM , let

G⊙ := {ψ ∈ SDiff(M) | ψ(⊙) = ⊙}

be the isotropy subgroup of the natural action of SDiff(M) on
M . The particle relabeling symmetry of an ideal fluid allows
us to project the equations of motion onto the quotient space
TSDiff(M)/G⊙. Upon choosing an interpolation method, i.e., a
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means of interpolating a smooth vector field between the particles
(see Fig. 1), we obtain an isomorphism to a direct sum of vector
bundles, TX ⊕ g̃⊙. Here, the base manifold, X , is the configuration
space of point particles in M , and TX is the tangent bundle of X
(the state or velocity phase space). The second component, g̃⊙, is
a vector bundle over X whose fiber over x ∈ X is the infinite-
dimensional vector space of vector fields which vanish at the
particle locations described by x. The vector bundle g̃ stores the
residual of an estimated spatial velocity field u obtained by an
interpolation velocity data at a finite set of points. More generally,
we can consider reducing by the subgroup

G(k)⊙ := {ψ ∈ SDiff(M) | T (k)⊙ ψ = T (k)⊙ id}.

The resulting Lagrange–Poincaré equations occur on a direct sum
TX (k) ⊕ g̃

(k)
⊙ , where X (k) is the configuration manifold of a more

sophisticated type of particle which carries extra data such as
orientation and shape; see Section 4 for the definitions of all
these objects. The equations on TX (k) ⊕ g̃

(k)
⊙ describe the coupling

between a fluid and this sophisticated type of particle in terms
of interpolation methods. The dynamics on the TX (k) component
suggests a new class of higher-order spatially accurate particle
methods.

1.1. Organization and main contributions

To understand the intent of this paper, it helps to explain what
we mean by an interpolation method. While a formal definition
will be given in Section 2.3, the idea is fairly simple. Given N
particles in M equipped with various data (e.g., position, velocity,
orientation, higher-order deformations), an interpolation method
is a rule which produces a vector field onM that is consistent with
this data (see Fig. 1). Using the concept of an interpolationmethod,
this paper accomplishes the following.

(1) For each interpolation method, we construct an isomorphism
between the quotient space (TSDiff(M))/G⊙ and the vector
bundle TX ⊕ g̃⊙ (Proposition 2.3).

(2) We derive equations of motion on TX ⊕ g̃⊙ for an arbitrary
G⊙-invariant Lagrangian on SDiff(M) (i.e., the Lagrange–
Poincaré equations, Theorem 3.1).

(3) We generalize these constructions to higher-order interpo-
lation methods. The resulting equations describe a family of
particle methods wherein the particles carry extra data such
as orientation, shape, and higher-order deformations (Theo-
rem 5.1 and Corollary 5.1).

(4) The numerical methods of Corollary 5.1 exhibit a particle-
centric analog of Kelvin’s circulation theorem (Theorem 5.5).

(5) We illustrate how first-order interpolation methods induce
particle methods which are related to the vortex blob method.

In particular, these goals are accomplished as follows. In Sec-
tion 2, we establish our notation and review the notion of a gen-
eralized connection (also called an Ehresmann connection; see [7])
as described in [8]. In Section 3, we carry out the reduction pro-
cess by the isotropy subgroup of a finite set of particles for an
ideal incompressible homogeneous inviscid fluid. The necessary
Lin contraints are addressed in the Appendix. In Section 4, we
discuss reduction by higher-order isotropies in order to discuss
particles with orientation, shape, and other attributes. In certain
circumstances, this additional information produces particle
methods which exhibit conservation laws found in the exact dy-
namics on SDiff(M). In Section 5, we formulate a family of parti-
cle methods induced by an interpolationmethod and discuss some
implications for the error analysis of these methods. We conclude
that it is possible to construct hybrid particle–spectral methods for
fluids within this family. Moreover, we show that the vortex blob
algorithm fitswithin this family ofmethods and that the horizontal

Fig. 1. Schematic representation of an interpolation method.

equations are a guide for corrections that allow for the deformation
of vortex blobs.We closewith Section 6,wherewe summarize how
to extend these constructions to complex fluids, turbulence mod-
els, and the template matching problems which occur in medical
imaging.

1.2. Previous work

It was shown in [1] that the Euler equations of motion for an
ideal, homogeneous, inviscid, incompressible fluid on an oriented
Riemannian manifoldM with smooth boundary are the spatial (or
Eulerian) representation of the geodesic equations on the group
of volume-preserving diffeomorphisms, SDiff(M). This observation
gave rise to a new perspective on fluid mechanics which lead to
many developments, notably the proof of well posedness [9] and
various extensions ranging all the way to charged fluids, magne-
tohydrodynamics, and even complex fluids with advected param-
eters (see, e.g., [10,11]). All of these systems are Lagrangian on
the tangent bundle of groups of diffeomorphisms of a Riemannian
manifoldM . Additionally, these theories utilize theparticle relabel-
ing symmetry of the system to perform Euler–Poincaré reduction
and thus bring the dynamics to the Lie algebra of this group
[12, Chapter 13].

As a result of this SDiff(M) symmetry, we may consider reduc-
ing by subgroups of SDiff(M). This would be a special case of La-
grange–Poincaré reduction introduced and developed in [13]. In
particular, we may consider reducing by isotropy groups of a set
of points in M . Such an approach is already mentioned in [14] for
vortex dynamics and in [15] for the purpose of landmarkmatching
problems; see also the references cited therein. However, to the
best of our knowledge, Lagrange–Poincaré reduction has not been
performed on such systems in the framework of [13].

2. Preliminary material

Before introducing our contributions, we review generalized
connections and volume-preserving diffeomorphisms and prove a
few important theorems.

2.1. Generalized connections

In this section, we introduce the notion of a generalized con-
nection, as presented in [8], and prove some useful propositions
for the purpose of this paper.

Definition 2.1. Let πE : E → M be a vector bundle, and let τE :
TE → E be the tangent bundle of E. The vertical bundle is the
vector bundle πV (E) : V (E)→ E, where V (E) := kernel(TπE) and
πV (E) := τE |V (E).
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