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Effect algebras (EAs), introduced by D. J. Foulis and M. K. Bennett, as common generaliza-
tions of Boolean algebras, orthomodular lattices and MV-algebras, are nondistributive algebraic
structures including unsharp elements. Their unbounded versions, called generalized effect alge-
bras, are posets which may have or may have not an EA-MacNeille completion, or cannot be
embedded into any complete effect algebra. We give a necessary and sufficient condition for
a generalized effect algebra to have an EA-MacNeille completion. Some examples are provided.

Keywords: effect algebra, generalized effect algebra, orthoalgebra, MacNeille completion of
a poset, one-element EA-extension of a generalized effect algebra, EA-MacNeille completion of
a generalized effect algebra.

1. Introduction and basic definitions

Effect algebras (EAs), introduced by Foulis and Bennett [3], are very suitable
generalizations of Boolean algebras in order to describe sets whose elements
may be mutually noncompatible or unsharp. Consequently, an effect algebra is
a nondistributive generalization including also unsharp elements x for which x
and x’ (non x) are not disjoint.

The prototype for axiomatic system of partially defined operation &, representing
parallel measurements of two effects, was the set £(H) of all self-adjoint linear
operators between the null and the identity operators in a complex Hilbert space H.
Note that simultaneously an equivalent (in some sense) structure called a D-poset
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has been introduced by Kopka [9] and Ko6pka and Chovanec [10], for studing fuzzy
events. Recently it was shown in [13, 18] that the set of all positive linear operators
densely defined on an infinite-dimensional complex Hilbert space H equipped with
a partial sum @, forms a generalized effect algebra (see [13, 18, 19]).

Generalized effect algebras are unbounded versions of effect algebras introduced
by several authors: Foulis and Bennett [3] (cones), Kalmbach and Riecanova [8]
(Abelian RI-semigroups and RI-posets), Hedlikovd and Pulmannovd [5] (cancelative
positive partial Abelian semigroups). All these generalizations are mutually equivalent.

In a general algebraic form an effect algebra (generalized effect algebra) is
defined as follow.

DEFINITION 1.1 [3]. A partial algebra (E, ®,0,1) is called an effect algebra
if 0,1 are two distinguished elements and @ is a partially defined binary operation
on E which satisfy the following conditions for any x,y,z € E:

(E1) x®y=y®x if one side is defined,

E2) xby)dz=xd (y®z) if one side is defined,

(E3) for every x € E there exists a unique y € E such that x &y =1 (we put
x'=y).

(E4) if x ® 1 is defined then x = 0.

We often denote the effect algebra (E, ®,0,1) briefly by E. On every effect
algebra E the partial order < and partial binary operation © can be introduced as
follows:

x<y and y©x=z iff x@z is defined and x Pz =y.

If E with the defined partial order is a lattice (a complete lattice) then (E, ¢, 0,1)
is called a lattice effect algebra (a complete effect algebra).

DEFINITION 1.2. (1) A generalized effect algebra (E,®,0) is a set E with an
element 0 € E and a partial binary operation & satisfying for any x,y,z € E
the conditions
(GE1) x®y =y ®x if one side is defined,

GE2) xdy)®z=x® (y D7) if one side is defined,
(GE3) if x ® y =x & z then y = z (cancellation law),
(GE4) if x®y=0then x=y=0
(GES) x®0=x for all x € E.
(2) A binary relation < (being a partial order) on E can be defined by

x <y iff there exists z€ E, xdz=y.

(3) Q C E is called a sub-generalized effect algebra (sub-effect algebra) of E if
0c QO (1€ Q) and if out of elements x,y,z € E such that x @ y = z at least
two are in Q, then all three are in Q.

(4) If elements of a (generalized) effect algebra E are positive linear operators
densely defined in an infinite-dimensional complex Hilbert space H then we
call E an operator (generalized) effect algebra.
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