TOP ELEMENT PROBLEM AND MACNEILLE COMPLETIONS OF GENERALIZED EFFECT ALGEBRAS

Z. Riečanová¹

Institute of Informatics and Mathematics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, SK-812 19 Bratislava, Slovakia (e-mail: zdena.riecanova@gmail.com)

and

M. KALINA²

Department of Mathematics, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, SK-813 68 Bratislava, Slovakia (e-mail: kalina@math.sk)

(Received July 11, 2014 - Revised July 16, 2014)

Effect algebras (EAs), introduced by D. J. Foulis and M. K. Bennett, as common generalizations of Boolean algebras, orthomodular lattices and MV-algebras, are nondistributive algebraic structures including unsharp elements. Their unbounded versions, called generalized effect algebras, are posets which may have or may have not an EA-MacNeille completion, or cannot be embedded into any complete effect algebra. We give a necessary and sufficient condition for a generalized effect algebra to have an EA-MacNeille completion. Some examples are provided.

Keywords: effect algebra, generalized effect algebra, orthoalgebra, MacNeille completion of a poset, one-element EA-extension of a generalized effect algebra, EA-MacNeille completion of a generalized effect algebra.

1. Introduction and basic definitions

Effect algebras (EAs), introduced by Foulis and Bennett [3], are very suitable generalizations of Boolean algebras in order to describe sets whose elements may be mutually noncompatible or unsharp. Consequently, an effect algebra is a nondistributive generalization including also unsharp elements x for which x and x' (non x) are not disjoint.

The prototype for axiomatic system of partially defined operation \oplus , representing parallel measurements of two effects, was the set $\mathcal{E}(\mathcal{H})$ of all self-adjoint linear operators between the null and the identity operators in a complex Hilbert space \mathcal{H} . Note that simultaneously an equivalent (in some sense) structure called a D-poset

¹Supported by APVV-0178-11 and VEGA-grant 1/0297/11.

²Supported by APVV-0073-10 and VEGA-grant 1/0297/11.

has been introduced by Kôpka [9] and Kôpka and Chovanec [10], for studing fuzzy events. Recently it was shown in [13, 18] that the set of all positive linear operators densely defined on an infinite-dimensional complex Hilbert space \mathcal{H} equipped with a partial sum \oplus , forms a generalized effect algebra (see [13, 18, 19]).

Generalized effect algebras are unbounded versions of effect algebras introduced by several authors: Foulis and Bennett [3] (cones), Kalmbach and Riečanová [8] (Abelian RI-semigroups and RI-posets), Hedlíková and Pulmannová [5] (cancelative positive partial Abelian semigroups). All these generalizations are mutually equivalent.

In a general algebraic form an effect algebra (generalized effect algebra) is defined as follow.

DEFINITION 1.1 [3]. A partial algebra $(E, \oplus, 0, 1)$ is called an *effect algebra* if 0, 1 are two distinguished elements and \oplus is a partially defined binary operation on E which satisfy the following conditions for any $x, y, z \in E$:

(E1) $x \oplus y = y \oplus x$ if one side is defined,

(E2) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ if one side is defined,

(E3) for every $x \in E$ there exists a unique $y \in E$ such that $x \oplus y = 1$ (we put x' = y),

(E4) if $x \oplus 1$ is defined then x = 0.

We often denote the effect algebra $(E, \oplus, 0, 1)$ briefly by E. On every effect algebra E the partial order \leq and partial binary operation \ominus can be introduced as follows:

 $x \le y$ and $y \ominus x = z$ iff $x \oplus z$ is defined and $x \oplus z = y$.

If E with the defined partial order is a lattice (a complete lattice) then $(E, \oplus, 0, 1)$ is called a *lattice effect algebra* (a *complete effect algebra*).

- DEFINITION 1.2. (1) A generalized effect algebra $(E, \oplus, \mathbf{0})$ is a set E with an element $\mathbf{0} \in E$ and a partial binary operation \oplus satisfying for any $x, y, z \in E$ the conditions
 - (GE1) $x \oplus y = y \oplus x$ if one side is defined,
 - (GE2) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ if one side is defined,
 - (GE3) if $x \oplus y = x \oplus z$ then y = z (cancellation law),
 - (GE4) if $x \oplus y = 0$ then x = y = 0
 - **(GE5)** $x \oplus \mathbf{0} = x$ for all $x \in E$.
- (2) A binary relation \leq (being a partial order) on E can be defined by

 $x \le y$ iff there exists $z \in E$, $x \oplus z = y$.

- (3) $Q \subset E$ is called a *sub-generalized effect algebra* (*sub-effect algebra*) of E if $\mathbf{0} \in Q$ ($\mathbf{1} \in Q$) and if out of elements $x, y, z \in E$ such that $x \oplus y = z$ at least two are in Q, then all three are in Q.
- (4) If elements of a (generalized) effect algebra E are positive linear operators densely defined in an infinite-dimensional complex Hilbert space \mathcal{H} then we call E an operator (generalized) effect algebra.

266

Download English Version:

https://daneshyari.com/en/article/1899608

Download Persian Version:

https://daneshyari.com/article/1899608

Daneshyari.com