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a b s t r a c t

In this study, we examine the signal detection ability of an array of neurons with intrinsic channel
fluctuation. Numerical simulations show that estimation of the input signal from the output spiking
activity of the neuronal array is most accurate if a proper amount of channel noise exists. Theoretical
calculation of the mutual and Fisher information confirms the effect of the noise-aided information
transfer in the array, or the presence of suprathreshold stochastic resonance. These results indicate that
the channel noise, which induces response variability, may play an essential role in population coding.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

One of the most prominent features of the central nervous
system is the remarkably high variability in spiking patterns [1–3].
From trial to trial, a neuron shows different firing activity
against the same stimulus while the behavior of the animal
is much more robust. Investigating the mechanisms enabling
reliable information processing through these unreliable neuronal
elements is a central challenge in neuroscience. Population coding,
where information is encoded in the ensemble response of
neurons, has been suggested to be a mechanism for solving this
problem [4–6]. In the framework of population coding, a neuronal
group involved in specific information processing shows robust
and reproducible activities whereas the discharge pattern of each
neuron is not necessarily identical or similar in every trial.
Neuronal variability may arise from several noise sources,

such as thermal agitation, stochastic ion channel opening and
random background synaptic activity [7,8]. Of these three, noise
of synaptic origin has been assumed to be dominant [9] and
studied most intensively [10–12]. However, ‘‘channel noise’’, or
the fluctuation in ionic current through the membrane induced
by stochastic opening and closing of ion channels, is receiving
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increasing attention [8,13], because recent experimental studies
have revealed that channel noise may significantly change the
real neuron activity [14,15]. Development of the patch clamp
technique has revealed the detailed properties of ion channels and
shown that a change inmembrane potential does not directly alter
the open–closed state but rather the open–close probability of
voltage gated ion channels [16,17]. The macroscopic ionic current
through the membrane is not fixed but fluctuates around the
level determined by the voltage dependence of the channel. If the
number of channels on the membrane patch is large enough, ion
channel stochasticity is averaged out and the total ionic current can
be regarded as deterministic and continuous. However, when the
number of channels recruited in a process decreases, microscopic
channel fluctuation increases and thus the macroscopic behavior
of the membrane may become different from the prediction of the
noiseless model [18–23].
One of the most important findings on interactions between

nonlinear systems and noise is the phenomenon called stochastic
resonance (SR) [24,25]. In the last quarter century, SR, or the
noise-aided information transfer, was found in various types
of physical and biological fields including the nervous system
[10,11,26–30]. Collective properties of noisy ion channels in terms
of SR have also been receiving increasing attention [31–34].
Conventional studies on SR focus mainly on the enhancement
of weak (or subthreshold) signals by noise. However, recent
studies have revealed that noise can facilitate information transfer
through a parallel array of threshold devices receiving large
(or suprathreshold) signals [35–37]. This phenomenon is called
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Fig. 1. Markov diagrams of sodium (Na) and potassium (K) channels. A Na channel
in the Hodgkin–Huxley model takes eight states and a K channel takes five states.
The state labeled ‘‘O’’ denotes the open state in which the channel is permeable to
ions. ‘‘Cx ’’ (x = 1, 2, 3, 4) and ‘‘Ix ’’ (x = 0, 1, 2, 3) are closed and inactivated states,
respectively.

Table 1
Transition probability functions.

αm = φ
0.1 (25−V )

exp((25−V )/10)−1 , βm = φ · 4.0 exp
(
−
V
18

)
αh = φ · 0.07 exp
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)
, βh = φ

1
exp((30−V )/10)+1

αn = φ
0.01 (10−V )

exp((10−V )/10)−1 , βn = φ ·0.125 exp
(
−
V
80

)
φ = Q (T−23)/1010

suprathreshold stochastic resonance (SSR). The existence of noise
leads to diversity in the response of the threshold devices, each of
which shows identical response to inputs without noise, and thus
the global response pattern of the array becomesmore diverse and
efficient.
In this paper, we examine the effect of SSR in a neuronal array

having intrinsic channel noise. Signal transmission capability,
measured by input estimation error, becomes optimal if a proper
amount of channel fluctuation exists. This simulational result is
confirmed by theoretical calculation of the mutual and Fisher
information. These results, connecting SSR with the ion channel-
basedmodeling, indicate the potential importance of channel noise
in population coding.

2. Modeling

In order to investigate the effect of channel noise in signal
detection, we use the deterministic Hodgkin–Huxley neuron
model of the neuronal membrane [38] and the corresponding
stochastic Markov channel model (see [20,22] for detailed
modeling procedures).
In the conventional Hodgkin–Huxley model:

Cm
dV
dt
= INa + IK + Ileak + Iext,

INa = gNa · (ENa − V ),
IK = gK · (EK − V ),
Ileak = gleak · (Eleak − V ),

each ionic current is described as a product of the ionic
conductance and the driving voltage. The ionic conductances gNa
and gK are continuous variables written as gNa = ḡNa · m3h and
gK = ḡK · n4 where ḡNa and ḡK are the maximum conductance
densities and m3h and n4 corresponds to the fraction of ‘‘open’’
channels. Temporal evolution of the variables x = m, h, n is
described as dx/dt = αx · (1 − x) − βx · x, where αx and βx
are experimentally determined functions which correspond to
the voltage dependence of the channel [17,38] (Table 1). In this

Table 2
Parameters used in the simulation.

Cm Membrane capacitance 1 (µF/cm2)
σNa Na channel density 100 (channels/µm2)
σK K channel density 18 (channels/µm2)
γNa Na channel conductance 6 (pS/channel)
γK K channel conductance 20 (pS/channel)
gleak Leak conductance 3.66 (pS/µm2)

ENa Na reversal potential + 50.0 (mV)
EK K reversal potential −75.0 (mV)
Eleak Leak reversal potential −60.0 (mV)

T Temperature 20.0 (◦C)
Q10 Temperature dependence 2.0

description, once the input to the model neuron Iext is fixed, the
output response calculated through the equations is deterministic.
In contrast to the conventional Hodgkin–Huxley description,

themicroscopic behavior of the ion channel ismodeled as aMarkov
process of finite states (Fig. 1) and a single channel conductance
takes discrete values [16,17]. When this ion channel behavior is
combined with the Hodgkin–Huxley description, the conductance
densities gNa = ḡNa ·m3h and gK = ḡK · n4 are replaced with

gNa = γNaσNa
MopenNa

MNa
and gK = γKσK

MopenK

MK
,

where γNa and γK denote the single channel conductances, σNa
and σK denote the number of channels per unit area, MNa and
MK denote the total numbers of ionic channels on the membrane,
and MopenNa and MopenK denote the numbers of open ionic channels
on the membrane. Parameter values used in our simulation are
summarized in Table 2.
To calculate the membrane potential numerically, we used the

forward Euler methods with a time increment of 0.5 µs. At each
time step, the state of each ion channel changes according to
the transition probability functions αx and βx (Table 1), and the
resulting ionic currents and themembrane potential are calculated
according to the equations above.
In all the simulations below, we control the number of channels

on the isopotential membrane by changing the membrane patch
area S [20,22]. The amplitude of the intrinsic fluctuation, which
is defined as the standard deviation of the membrane potential
around the resting state, is inversely proportional to

√
S (Fig. 2),

just as predicted by the central limit theorem. In small membrane
patches, fluctuation size is above the 1/

√
S line because sponta-

neous action potentials occur without external inputs [18,21].

3. Response of single neuron

Wechanged external inputs to themodel neuron and calculated
the firing probability (Fig. 3). External input is modeled by a so-
called alpha function Iext(t) = s · (t/τ) exp(1 − t/τ) where s
is the peak height and τ (fixed to 0.3 ms in our simulation) is
the time constant. In the conventional noiseless Hodgkin–Huxley
model, the neuron never fireswith subthreshold inputs and always
fires with suprathreshold inputs (Fig. 3, inset). In the stochastic
channel-based model, however, a neuron does not have a definite
threshold. Rather, the firing probability increases continuously
with the input size. The slope of this input–output curve depends
on the membrane patch area, or the number of channels of the
membrane. The response of the stochastic neuron with a sufficient
number of channels is similar to that of the noiseless model, and as
the number of channels decreases, the slope becomes more linear
(Fig. 3). The s-shaped response curveswere fitted by the integrated
Gaussian function with parameters µ and σ :

f (x) =
∫ x

−∞

1
√
2πσ

exp
(
−
(ξ − µ)2

2σ 2

)
dξ

=
1
2

(
1+ erf

(
x− µ
√
2σ

))
,
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