THE RIGGED HILBERT SPACES APPROACH IN SINGULAR PERTURBATION THEORY

S. Albeverio

Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-53115 Bonn, Germany SFB 256, Bonn, BiBoS, Bielefeld - Bonn IZKS Bonn

CERFIM, Locarno and Acc. Arch., USI, Switzerland (e-mail: albeverio@uni-bonn.de)

R. BOZHOK and V. KOSHMANENKO

Institute of Mathematics, Tereshchenkivs'ka str. 3, Kyiv 01601, Ukraine (e-mails: bozhok@list.ru, kosh@imath.kiev.ua)

(Received February 17, 2006 - Revised May 22, 2006)

We discuss a new approach in singular perturbation theory which is based on the method of rigged Hilbert spaces. Let A be a self-adjoint unbounded operator in a state space \mathcal{H}_0 and $\mathcal{H}_- \sqsupset \mathcal{H}_0 \sqsupset \mathcal{H}_+$ be the rigged Hilbert space associated with A in the sense that $\mathrm{dom} A = \mathcal{H}_+$ in the graph-norm. We propose to define the perturbed operator \tilde{A} as the self-adjoint operator uniquely associated with a new rigged Hilbert space $\tilde{\mathcal{H}}_- \sqsupset \mathcal{H}_0 \sqsupset \tilde{\mathcal{H}}_+$ constructed using a given perturbation of A. We show that the well-known form-sum and self-adjoint extensions methods are included in the above construction. Moreover, we show that the super singular perturbations may also be described in our framework.

2000 Mathematics Subject Classification: 47A10, 47A55.

Keywords: singular perturbation, singular quadratic form, rigged Hilbert space, dense embedding, self-adjoint extension, singular perturbations of a higher order.

1. Introduction

Let $A = A^* \ge 1$ be an unbounded self-adjoint operator in a Hilbert space \mathcal{H}_0 with the inner product $(\cdot, \cdot)_0$. And let

$$\mathcal{H}_{-} \supset \mathcal{H}_{0} \supset \mathcal{H}_{+} \tag{1.1}$$

be the rigged Hilbert space associated with A in the sense that the domain $\operatorname{Dom} A = \mathcal{H}_+$ in the graph-norm. Here the symbol \square means dense and continuous embedding. We note that a given pre-rigged pair $\mathcal{H}_0 \square \mathcal{H}_+$, the Hilbert space \mathcal{H}_- is uniquely defined as the conjugate space to \mathcal{H}_+ with respect to \mathcal{H}_0 (for details see [8, 9]).

Besides the triplet (1.1) we will use also the chain of five spaces

$$\mathcal{H}_{-} \supset \mathcal{H}_{-1} \supset \mathcal{H}_{0} \supset \mathcal{H}_{1} \supset \mathcal{H}_{+}, \tag{1.2}$$

where $\mathcal{H}_1 = \text{Dom } A^{1/2}$, and \mathcal{H}_{-1} is the completion of \mathcal{H}_0 in the norm $\|\cdot\|_{-1} = \|A^{-1/2}\cdot\|$.

Given $A = A^*$, another self-adjoint operator \tilde{A} in \mathcal{H}_0 is said to be a purely singular perturbation of A if the set

$$\mathcal{D} := \{ f \in \text{Dom } A \cap \text{Dom } \tilde{A} : Af = \tilde{A}f \} \text{ is dense in } \mathcal{H}_0$$
 (1.3)

(see [3, 5, 15–17, 20–30]). Under condition (1.3) we write $\tilde{A} \in \mathcal{P}_s(A)$ if \tilde{A} is bounded from below. We write $\tilde{A} \in \mathcal{P}_{ws}(A)$ if $\operatorname{Dom} A^{1/2} = \operatorname{Dom} \tilde{A}^{1/2}$ (we means weakly singular, i.e. a perturbation belongs to the \mathcal{H}_{-1} -class), and $\tilde{A} \in \mathcal{P}_{ss}(A)$ if the set \mathcal{D} is dense in \mathcal{H}_1 (se stands for strongly singular, i.e. a perturbation belongs to the \mathcal{H}_{-2} -class). Thus $\mathcal{P}_s(A) \supset \mathcal{P}_{ws}(A) \cup \mathcal{P}_{ss}(A)$.

It is clear that for each $\tilde{A} \in \mathcal{P}_s(A)$ there exists a densely defined symmetric operator

$$\mathring{A} := A | \mathcal{D} = \tilde{A} | \mathcal{D}$$

with nontrivial deficiency indices $\mathbf{n}^{\pm}(\mathring{A}) = \dim \ker(\mathring{A} \mp z)^* \neq 0$, $\operatorname{Im} z \neq 0$. Therefore each $\widetilde{A} \in \mathcal{P}_s(A)$ may be defined as a self-adjoint extension of \mathring{A} , different from A. In singular perturbation theory each \widetilde{A} is fixed by some abstract boundary condition, which corresponds to a singular perturbation. In turn a singular perturbation is usually presented by a singular quadratic form γ given in the rigged Hilbert space (1.1).

In the present paper we propose to use a singular quadratic form γ (corresponding to a perturbation) for the construction of a new chain of Hilbert spaces similar to (1.2),

$$\tilde{\mathcal{H}}_{-} \supset \tilde{\mathcal{H}}_{-1} \supset \mathcal{H}_{0} \supset \tilde{\mathcal{H}}_{1} \supset \tilde{\mathcal{H}}_{+}, \tag{1.4}$$

and then to define the perturbed operator \tilde{A} as an operator associated with this new rigging (1.4).

In the paper, see below Theorem 5.1, Theorem 5.2, Theorem 6.1, and Theorem 7.1 we establish a one-to-one correspondence between three families of objects: singular perturbations $\tilde{A} \in \mathcal{P}_{ss}(A)$, rigged Hilbert spaces of the form (1.4), and singular quadratic forms γ with fixed properties. We extend this one-to-one correspondences to a more general set of objects involving super singular perturbations.

2. Singular quadratic forms in A-scales

Let $A \ge 1$ be a self-adjoint unbounded operator in a separable Hilbert space \mathcal{H}_0 which is equipped in such a way that the domain $\mathrm{Dom}\,A = \mathcal{H}_+$ in the norm $\|\cdot\|_+ := \|A\cdot\|$ (see (1.1)).

In the paper we discuss a new construction of singularly perturbed operator \tilde{A} in \mathcal{H}_0 . Namely, we define \tilde{A} as the operator associated with a new rigged Hilbert space $\tilde{\mathcal{H}}_- \supset \mathcal{H}_0 \supset \tilde{\mathcal{H}}_+$, where $\tilde{\mathcal{H}}_+ = \mathcal{D}(\tilde{A})$. The inner product $(\cdot, \cdot)_+^{\sim}$ in $\tilde{\mathcal{H}}_+$ is defined as a perturbation of the inner product $(\cdot, \cdot)_+$ in \mathcal{H}_+ . Formally one can write $(\cdot, \cdot)_+^{\sim} = (\cdot, \cdot)_+ + \gamma(\cdot, \cdot)$, where the form γ corresponds to a singular perturbation.

Download English Version:

https://daneshyari.com/en/article/1899861

Download Persian Version:

https://daneshyari.com/article/1899861

<u>Daneshyari.com</u>