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Abstract

The dynamics of very heavy particles suspended in incompressible flows is studied in the asymptotics in which their response time is much
larger than any characteristic time of fluid motion. In this limit of very large Stokes numbers, particles behave as if suspended in a §-correlated-in-
time Gaussian flow. At those spatial scales where the fluid velocity field is smooth, following Piterbarg [L.I. Piterbarg, The top Lyapunov exponent
for stochastic flow modeling the upper ocean turbulence, SIAM J. Appl. Math. 62 (2002) 777] and Mehlig et al. [B. Mehlig, M. Wilkinson,
K. Duncan, T. Weber, M. Ljunggren, Aggregation of inertial particles in random flows, Phys. Rev. E 72 (2005) 051104], the two-particle dynamics
is reduced to a nonlinear system of three stochastic differential equations with additive noise. This model is used to single out the mechanisms
leading to the preferential concentration of particles. Scaling arguments are used to predict the large Stokes number behavior of the distribution
of the stretching rate and of the probability distribution function of the longitudinal velocity difference between two particles. As for the fractal
character of the particle distribution, strong numerical evidence is obtained in favor of saturation of the correlation dimension to the space
dimension at large Stokes numbers. Numerical results at finite Stokes number values reveal that this model catches some important qualitative
features of particle clustering observed in more realistic flows.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction clouds [2] or planet formation by dust accretion in the solar
system [3]. Engineering applications encompass optimization

Dust, impurities, droplets, air bubbles, and other finite-size of spray combustion in diesel engines [4] and in rocket
particles transported by incompressible flows are commonly  propellers [5].

encountered in many natural phenomena and industrial Particles with a finite size and a mass density different from
processes. A salient feature of such suspensions is the presence that of the carrier fluid have inertia. They do not evolve as
of strong inhomogeneities in the spatial distribution of particles. simple point-like fluid tracers and are termed ‘inertial particles’.

This phenomenon is dubbed ‘preferential concentration’ (see,
e.g., [1]). Such inhomogeneities affect the probability to
find particles close to each other, and thus influence their
possibility to collide or to interact biologically, chemically,
or gravitationally. Examples showing the importance of the
phenomenon are rain initiation by droplet coalescence in warm

It can be shown that if their size is below the smallest active
scale of the flow (e.g. the Kolmogorov length scale in turbulent
flows), the particles are subject to drag, buoyancy, added mass,
etc. (see, e.g., [6]). Here we are interested in the limit where
particles are not only very small, but also much denser than
the surrounding fluid. They then interact with the fluid only
through a Stokes viscous drag whose characteristic time (made
* Corresponding author. dimensionless by normalizing it with the typical time scale
E-mail address: bec @obs-nice.fr (J. Bec). of the carrier flow) is referred to as the ‘Stokes number’ St.
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Experiments [1,7] and numerics [8—10] show that the degree
of inhomogeneity in the spatial distribution of the suspended
particles is a non-trivial function of the Stokes number with a
maximum at St & 1.

Quantifying analytically this dependence is an open
question. Tools of dissipative dynamical systems are of
great use for the investigation of those spatial scales on
which the carrier flow is smooth. Indeed, in contrast to
tracers in incompressible fluids, inertial particles dynamics
is dissipative due to their friction with the fluid. In the
position—velocity phase space, their trajectories converge to
a dynamically evolving attracting set which is generically
multifractal [11,12]. The particle spatial distribution, obtained
by projecting this singular set onto the physical space, can
also be multifractal [13]. Many observables introduced in
the framework of dynamical systems, such as correlation
dimension, Lyapunov exponents, or stretching rates, bring
important information on particle concentration. Little is known
about the dependence of these observables on the Stokes
number. Several attempts in determining it have been made in
simplified settings: small Stokes number asymptotics [14,15],
Gaussian flows with finite [16—18,13] and zero correlation time
[19,24,20-23].

In this paper we focus on inertial particles in the limit of
very large Stokes numbers. In Section 2 we show that in this
limit, no matter the actual nature of the underlying carrier
flow provided it is statistically homogeneous and isotropic,
the particles do behave as if suspended in a time-uncorrelated
Gaussian flow. This result was derived independently in [25]. In
Section 3, the approach of [19,21] is applied to write the relative
motion of two suspended particles as a three-dimensional
(random) dynamical system. This reduced dynamics is related
to different observables quantifying inhomogeneities in the
particle distribution. Some heuristic understanding of this
model is provided.

In Section 4 we extend the scaling arguments developed
in [23] to the large Stokes number behavior of velocity
differences and of the stretching rate. Predictions are confirmed
by numerical experiments which reveal algebraic tails with
exponent —3 for the probability distribution function (pdf)
of the longitudinal velocity difference between particles. A
heuristic argument explaining this behavior is provided. The
fractal (correlation) dimension is then investigated numerically
in Section 5. Evidence is given that it saturates to the space
dimension at sufficiently large values of the Stokes number.

Beside the physical relevance in the large St asymptotics,
spatially smooth Gaussian carrier flows without time correla-
tions are valuable models for systematic investigations. We thus
study in Section 6 small and intermediate values of the Stokes
number. In contrast to the quadratic behavior observed in more
realistic flows [15,13,17], it is observed that for St <« 1 the
deviation from a uniform distribution is linear in St. However,
the general qualitative picture is nonetheless in accordance with
observations in real flows. In particular, simulations show that
deviations from uniformity are strongest at intermediate values
of the Stokes number. As a §-correlated flow has no structure,
this observation questions the phenomenological explanation of

particle clustering often found in the literature (see, e.g., [1]).
Section 7 is devoted to concluding remarks and summarizes the
main findings. Appendix A provides some details on the numer-
ical methods.

2. Model dynamics at large Stokes numbers

For suspensions that are so dilute that collisions, hydrody-
namic interactions between particles and retro-action of the par-
ticles on the flow can be disregarded, the equations governing
the evolution of a spherical particle with density p different
from that of the carrier fluid p s have been derived in [6]. It was
assumed there that the particle radius @ is much smaller than
the Kolmogorov scale 1 and that the particle Reynolds number
is very small. This implies that the flow surrounding the particle
can be approximated by a pure Stokes flow.

In the present paper, we consider impurities that are much
heavier than the carrier fluid (o > p ) in the absence of gravity.
The time evolution of the particle position X (¢) then takes the
simple form:
d’x 1 [dX ]
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where T = (2a? p)/(9vp ) is the particle response time, the
so-called ‘Stokes time’, and v denotes the kinematic viscosity
of the carrier fluid.

We are interested in particles with substantial inertia,
meaning that ¢ > 71y, where 7, denotes the largest
characteristic time of the carrier flow. In a first approximation,
such particles relax so slowly to the fluid flow that, along their
paths, the local structure of the fluid velocity field changes
several times in the interval of time t. Thus, on the typical
time scales of particle motion, the effective fluid velocity field
behaves as a time-uncorrelated process. This can be shown
formally by rescaling the time as s = t/t, so that Eq. (1)
becomes

X X + tu(X(zs), ts) 2
— = —— + tu(X(rs), T5).
ds? ds

Now, the correlation time of the velocity field being finite and
smaller than 7y by definition of the latter, the central-limit

. 1 ~
theorem yields 12y, (x, 5) vy i (x,s) when T > 7, where

~ . . Lo

u is a é-correlated Gaussian process and where the relation ~
designates equivalence in probability law. With this expression
and with transforming s back to the physical time 7, (2) yields:

=g X

dt )

x 1 [dX }
Hence, particles with very large inertia behave as if suspended
in a Gaussian, §-correlated in time carrier velocity field. For the
sake of notation simplicity, we shall omit the tilde on the fluid
velocity and refer to u as a §-correlated carrier flow.

In many real flows, the small-scale properties can be
understood by considering a spatially smooth, statistically
homogeneous and isotropic velocity field. These spatial
properties carry over to the limiting (Gaussian) process, whose
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